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1 Introduction

The wavelet transform allows for a decomposition of signals with respect to
position and scale. It is an attractive formalism for the analysis of turbulent
flows because turbulent signals in space and time contain statistically significant
localized features, so-called coherent structures.

In the past, the wavelet analysis of flows in bounded domains has been ham-
pered by the lack of suitable analyzing functions for closed intervals. Typically,
studies of the flow scales in turbulent plane channels have been restricted to
the analysis of the doubly-periodic wall-parallel planes (e.g. [1]). This does not
allow to explicitly account for phenomena in the wall-normal direction. When
using proper orthogonal decomposition in the inhomogeneous direction, no clear
a priori definition of “physical length scale” is available for the modes. Since
there is a continuing scientific and technological interest in understanding the
dynamics of near-wall turbulence we wish to extend existing wavelet instruments
such that they can deal with the bounded coordinate direction.

The problem with existing wavelet methods for treating the interval is that
they do not meet all of the criteria required for the purpose of analysis of data
from DNS of turbulent flow: (i) Discrete orthogonal transform. It allows for
filtering in wavelet space and does not increase the data size. (ii) Orthogonality
with respect to a scalar product with unity weight. The total energy then is
represented by the sum of the squares of the wavelet coefficients (Parseval’s
theorem). (iii) Symmetry of wavelet functions, at least in the center of the
interval. (iv) An acceptable trade-off between localization in space and scale.
More specifically, Daubechies wavelets for the interval [2] violate condition (iii);
mapping the interval to a periodic space, as in [3], does not allow for (ii) [4].
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2 New orthogonal polynomial basis

In the present study we employ a new orthogonal wavelet basis, developed in [4],
which is generated from a recombination of Legendre polynomials Lk. Chebyshev
polynomials of the second kind, Uk, evaluated at a suitable set of root points

y
(m)
l are used as weights [5]:
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ψ
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k + 1/2·Lk(x) , j=0, 1, . . . i=0 . . .2j−1 . (1)

where Cψij are normalization constants. The characteristic length scale of each
function ψji varies with position, i.e. there is no strict translational invariance.
Hence, the physical scale of each wavelet is measured by an appropriately defined
scale function sx = s(j, i).

We have constructed non-classical multi-resolution analyses for the treatment
of two-dimensional data with one periodic (x) and one bounded coordinate direc-
tion (y), i.e. for spanwise or streamwise slices extracted from plane channel flow.
Higher dimensions or other combinations are straightforward. Here, only one
variant is considered where a tensor product between periodic spline wavelets
ψ̃jx,ix(x) and the new polynomial wavelets ψjy ,iy (y) is performed with indepen-
dent scale indices jx, jy for the two directions. The decomposition of a scalar
signal then reads:
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J
∑

jx=0

J
∑

jy=0

2jx−1
∑

ix=0

2jy −1
∑

iy=0

u
jx,jy
ix,iy

ψ̃jx,ix(x)ψjy ,iy (y) , (2)

where a wavelet coefficient u
jx,jy
ix,iy

is obtained by the scalar product of the signal

and the corresponding wavelet function due to (i).

3 Local wavelet spectra

We consider data from two DNS of plane channel flow performed by the first
author at Reynolds numbers Reτ = 190 and Reτ = 590 in a domain of size
2π×2×π using 600×385×600 discrete Fourier/Chebyshev modes, respectively.

We define the ensemble-averaged 1d power spectral density as a function of
wall-normal position y and wall-normal “scale-number” ky ≡ 1/sy (the latter
being the wavelet analog to a Fourier wavenumber):

Eαα(y; ky) ≡ 2jy
∑

jx,ix

<
(

(uα)
jx,jy
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)2

>

∆ky
, (3)

where uα is a component of the velocity fluctuation. Statistics from 150 planes
gathered over one flow-through time have been used to compute the pre-multiplied
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spectra shown in Figure 1. The large scale limit of all wall-normal spectra is
imposed by the channel height of 2h+ = 2Reτ). At the higher Reynolds number
the overall range of active modes is broader, reflecting the widening of the gap
between inner and outer scales. For a given Reynolds number, increasing the
wall distance means moving the small-scale limit of the pre-multiplied spectrum
towards larger scales and steepening it, thereby reducing the range of excited
scales. The behavior of the streamwise (u1) and wall-normal (u2) components
differs considerably. At Reτ = 590, kyE22 has a peak scale which increases pro-
gressively from 15 wall units at y+ = 5 to the full channel height, whereas kyE11

always has the maximum energy content at the largest scale s+y = 2Reτ . In this
respect the pre-multiplied spectra for the spanwise component are somewhat in-
termediary between u1 and u2. Our observations are consistent with experimen-
tal two-point correlations of streamwise and wall-normal velocity components in
[6]. Moreover, we point out the agreement with Townsend’s [7] attached eddy
model stating that u2 is significantly constrained in the logarithmic layer through
the impermeability condition of the wall.
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Reτ = 590 Reτ = 190
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Figure 1: Pre-multiplied wall-normal power spectra kyEαα(y+; ky) as
a function of scale s+y in plane channel flow at Reτ = 590 with
y+ = {5, 10, 30, 60, 100, 200, 300, 400, 500}(left) and Reτ = 190 with y+ =
{5, 10, 30, 50, 75, 100, 140, 190} (right) for (a) streamwise, (b) wall-normal and
(c) spanwise velocity components. Increasing y+ means a shift towards larger
scales while line styles rotate through solid, dashed, dotted, dash-dotted. Spec-
tra are normalized to unit area.


