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Abstract

We give an introduction to the system of shallow water equations. Emphasis is put upon
its analytical properties and its implications for numerical solution strategies.

1 Introduction

1.1 Simulated Flow

The movement of an incompressible fluid (V-4 = 0) with constant density under the influence of a
gravitational body force is considered. The description is basically inviscid except for the possible
inclusion of a viscous bottom friction term.

Vertical accelerations of the fluid are neglected, which allows to integrate the remaining part
of the vertical momentum equation and to obtain an expression for the pressure which in turn can
then be eliminated from the system. The error associated with this approximation is of the order
of —p./(put) ~ h?/1* (h undisturbed water height, [ characteristic length scale of the waves in
a-direction). This estimate is equivalent to the so-called “long-wave limit” of wave motion, i.e. we
are dealing with either very long waves or with shallow water. Physically, the horizontal velocity
that is retained can be interpreted as a vertical average of the fluid velocity.
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Figure 1: Schematic of the coordinates and variables of the shallow water model

The system of equations that governs the above class of flows can be conveniently written as

follows: B B B
0Q+ 0y, ;=85 (1)
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In the above notation, h signifies the water depth, v and v the horizontal velocity coordinates
of the fluid, g the gravitational accelaration, z the vertical coordinate of the bottom taken from
some reference point, Sy, and Sy, denote the two components of the bottom friction that can be
expressed by the Manning formula

nuvu? + v? n2ovu2 + v2
Spr = s Sty = s (2)

where n is an empirical roughness coefficient.

1.2 Applications

Possible applications of the shallow water — or St. Venant — equations include various problems
of open surface hydraulics: river hydraulics, man-made canals and irrigation systems as well as
marine flows.

e A well-known case from the class of land-based or artificial flows is the prediction of the time
evolution of the flood wave induced by a rupture of a containing dam [1, 2] which obviously
has important implications for hasard assesssment.

e An example of an environmental flow study based on the shallow water approximation is
the computation of the wave motion induced by a land slide into a lake [3, p. 173].

e A marine flow prediction of particular interest is connected to tsunamis: a given seismically
induced wave propagates in the region of the continental shallows and shelf [4].

Many more applications exist such as wave motion in harbor basins or flow in urban sewage
systems.

1.3 Limitations

The use of the St. Venant equations is above all limited by the previously mentioned assumption
of long waves. When the gravitational waves can no longer be considered as “long” (i.e. h/l ~ 1),
the hypothesis of two-dimensionality of the flow becomes invalid. Particularly, so-called “breaking
and peaking” of waves near the shoreline cannot be realistically captured by this model. Surface
tension (capillary effects) is equally excluded in the present description since these effects are
associated to the regime of very short waves.

Furthermore, the effect of a partially free surface, e.g. in a combination of pipe and river flow,
can only be taken into acount by a split of the problem into zones where the respective models
would be applied.

In the case of very large domains (marine flows extending over a large range in latitude) Coriolis
forces should be included in the equations.

The effect of wind on waves is not taken into account, i.e. the action of tangential stress at the
water/air interface is neglected.



1.4 Present Approach

The system of equations (1) is of strictly hyperbolic type and as such admits discontinous solutions
either as a consequence of discontinous initial data or in some cases through the evolution from
initially smooth data (wave steepening).

The theory of characteristics allows to construct solutions to a number of elementary problems
including discontinuities (such as the hydraulic jump). However, the analysis is restricted to simple
cases such that a numerical solution is desirable. This is our present objective.

In the present note we will first develop in detail the analytical solution to the Riemann
(discontinous initial-value) problem for the shallow water equations in the flat-bottom case. In
this we will follow the general technique laid out by Smoller [5]. Besides its direct importance for
dam-break flows the Riemann problem exhibits the essential physics encountered in more complex
cases while keeping the geometric configuration simple and tractable. As such it has become a
reference test case of choice for validating numerical methods. Moreover, the solution to the very
Riemann problem has found its way into a good part of the modern numerical schemes conceived
for the shallow water equations (and in fact for most hyperbolic systems).

In section 3 we will then present several more recent numerical approaches applicable to our
system (1). We will especially discuss the difficulties associated with the numerical treatment of
the source terms in the non-uniform bottom case which deprive the system of its conservation

property.

2 Discussion of the Riemann problem

In the following we will concentrate on the time evolution of our flow model from an initial state
that consists of two semi-infinite uniform zones which are separated by a discontinuity. One can
imagine a realization of this situation by positioning a diaphragm (“infinitely thin dam”) between
the two fluid states and somehow rupture it at time ¢ = 0. Our objective is to determine the
resulting induced wave motion as a function of the initial state. This problem is geometrically one-
dimensional in that the solution only depends on one space coordinate normal to the diaphragm,
say  €,. In this section we will first restrict our analysis to one-dimensional motion, i.e. ¥ = u €,
and the flat-bottom case without bottom friction, viz.

L . [ h , uh

We will return to the two-dimensional case and the question of a non-uniform bottom at a later
point.

2.1 Characterization of the system of equations

The jacobian matrix J of equations (3),

_OF 0 1

has two distinct and real eigenvalues \; < 0 < Aa,

M=u—c, M=utc, c=+/gh |, (5)



such that we are dealing with a strictly hyperbolic system. We note that the celerity of
gravitational waves ¢ = /gh takes the place the speed of sound has in gas dynamics and the
Froude number Fr = |u|/c is the analogue to the Mach number.

Let us reduce the system (3) to a diagonal form. For this we need the right eigenvectors
satisfying (J — \;I) - 7 = 0 which form the columns of the following matrix R,

(L)

Rlz(u+c 11).% _ )

with the inverse

The diagonalization of the jacobian J (denoting A = diag()A1, A2)) can be written as:
8,3+ RAR19,3 = 0. (8)
In the linear case, i.e. when the Jacobian is constant, we have

—R'9,0+AR'9,§ = 0 (9)
— W + AW = 0 (10)

where R_laé_j = OW defines the characteristic variables W; which are advected along character-
istic lines with respective wave speeds ;.

2.2 Analytic solution to Riemann’s problem

Let us consider the initial-value problem with the following data

Q(z,tO){QL r<0 (11)

QR x>0
In our case, both characteristic fields are genuinely non-linear (GNL), since [5]
O\

a@-f"7é0 i={1,2} . (12)

This fact signifies that the two wave-fields can either be smooth solutions called simple waves
(“rarefactions” in the terminology of gas dynamics) or (discontinous) shocks. In general it exists
one more possible type of solution, that of a contact discontinuity, which however does not appear
in the present one-dimensional case but is encountered when carrying both velocity components
in the equations (cf. section 77?).

The solution to (11) will consist of constant states separated by either shock waves or rar-
efaction waves. The solution for ¢t > 0 can be divided into zones as shown in figure 2. Zones “1”
and “2” have zero width in the case of a respective shock and will otherwise consist of a smooth
variation over a finite interval.

We begin by studying shock waves. The notion of a weak solution of a conservation law has
been coined by Lax [6] and is explained in § A. A volume integral balance across a discontinuity
propagating at speed o gives for our system ([-] denoting a jump)

o [q]«[F] =0 . (13)
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Figure 2: Zones and limiting coordinates of the solution to the Riemann problem for ¢ > 0.
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Figure 3: Schematic of (a) a 1-shock and (b) a 1-rarefaction wave.

such that we get explicitly

—o [h]+[hu] = 0, (14)
—o [hu] + [hu® +gh*/2] = 0. (15)

The mathematical solution for a jump between left and right states @l, er satisfying x; < x, is
the following

c z+1

—(z—=1)\/——, 16
5=y (16)

Z Uy — U

=4

o =
z—1

where the ratio z = h,/h; is a paramter. Next we need to select the physically meaningful
sign of the velocity jump in (16). From the shock conditions first derived by Lax [6] (also called
“entropy conditions” with respect to gas dynamics) we know that the following inequalities hold
for 1-shocks

c<M(@), MGy <o<X(@) . (17)

By substitution of the jump conditions (16) one can verify that these inequalities can only be
satisfied when z > 1 and the — sign is selected in (16) in the case of a 1-shock. Moreover, o is
seen to be negative and the inequalities o < u,, o < u; hold. We thus have the situation shown
in figure 3(a). The flow constantly feeds characteristic waves into the back of the shock while no
information on the shock preceeds its own propagation. The fact that z > 0 shows a shock to be
“compressive”, i.e. that our height variable h always increases when a shock has passed. Finally,
the bounds on ¢ prove that fluid particles pass a 1-shock from left to right.

The case of a 2-shock is analogous: we obtain z < 1 and need to select the + sign in (16).



Let us now turn to the rarefaction curves. These are so-called simple waves, i.e. regions of
the solution in which the variables vary smoothly between two states. Since the k-characteristic
speed always increases through a k-rarefaction curve (A,(Q(x/t)) increases as z/t increases) the
k-characteristic paths do not cross and form what is sometimes called an expansion fan ( figure
3(b)). One has thus in a 1-rarefaction wave:

AM(Qr) = M (@) - (18)

Associated to each k-simple wave there are (n — 1) k-Riemann invariants I}, that satisfy

oI
L (I (19)
oQ
and which remain constant within the interval covered by the k-simple wave. In our case (of
an n = 2 dimensional system of equations), it can be verified that the following expressions are

the two Riemann invariants:
Ih=u+2c, If=u-—2c. (20)

With respect to the 1-rarefaction curve, we thus have

u; + 2¢; = u, + 2¢, . (21)

Using (18) and (21) we can conclude that 1 > (h,/h;) > 0, i.e. that the water height
decreases in a rarefaction wave. Again, the situation is analogous in the case of a 2-rarefaction
(X2(@y) > Xa(@y) and 1 > (hy/h,) > 0). We can now introduce a dimensionless parameter
x = —log(h,/h;) > 0 (x = log(hy/hi) > 0 for a 2-rarefaction) such that the rarefaction curves
can be described by the following formulas:

l-rarefaction curve 2-rarefaction curve
he/hy = e X he/hy = ex (22)
x20 Up — Uy /2 x20 Up — U /2
. = 2(1-eX?) . = 2(eX/?-1).
Similarly, the shock curves can be parmetrized using y = —log(z) < 0 for the 1-shock and

X = log(z) < 0 for the 2-shock, viz.

1-shock curve 2-shock curve
hr/hl = e X hr/hl = eX
<0 <0
= Up — Uy _ e X +1 X= Uy — U ex +1
= —(eX—l) —_ = +(eX-1) :
q 2e~X c 2ex

(23)

With these ingredients it is now possible to put together the one-parameter functions associated



with each “family” of curves, i.e. for each wave field whatever its type might be:

1-family, y real

h 2(1—67’(/2) z>0
T X u:fl(x):
hy ’ al (o= _ ex+1

(e 1) o=x x <0

(24)
2-family, x real
) P (eX/2 _ 1) 23>0
Loex, oy =
= eX, — — <
hy a (eX — 1) ex+1 <0.
2ex

The global solution to the Riemann problem is obtained by defining a set of transformations
across each field in order to connect the left and right initial states. Before proceeding, we need
the following three properties:

fi) > o, (25)
fiR) = [-00,2], (26)
f0) = Alx)-eX?. (27)

Particularly, the first inequality (25) can be verified by considering that the drivative f; is mono-
tone in both the positive and negative branch of y.

Defining the vector of primitive variables V = (h,u) = (v, v2), we introduce now the general
transformations 77, i = 1,2:

TS) Vo= (efx -1, V2 + fl(X)\/g\/a) )
T>E2) Vo= (X v, v+ fo(X)VIVoT) - (28)

Solving the Riemann problem comes down to determining the real numbers y; and xo for which:

Ve=T® .1 .V, . (29)

Explicitly, the transformation given in (29) can be written as:
hR - e~ X1 . eX2. hL (30)
Ur ur, +cr (filx1) + falxz) - e /%)

It is useful to define the global parameters

hR uUuRrp —uj,
=— C=——. 31
h o (31)

From the first component of (30) we deduce

log(B) =x2 —x1 (32)

while we get from the second component

C = filx1) + falx2) e /2 . (33)



Using the property (27) and relation (32), we rewrite this as

C = filx1) + fi (x1 +log(B) VB . (34)

We can now: (i) find bounds on the admissiblility of the initial data and (ii) formulate criteria
for the appearance of either rarefactions or shock curves in the solution depending on the initial
data. To this end let us consider the rarefaction curves which present the critical part of the
solution.

Suppose that the 1-family is a rarefaction curve, i.e. x1 > 0. In the limit between a shock/-
rarefaction x; = 0 and from (34) we have C' = fi(log(B))vVB. Since we know that f| > 0, we
find that in the general case (whith x1 > 0):

C > fi(log(B)VB (35)

for the 1-family to be a rarefaction curve. The solution of (34) in this case can be given
explicitly, viz.

x1 = —2log (% (1 -~ \/E) - 30) : (36)

from which arises as a further condition

2 (1+VB)>C | (37)

for x1 to be real. If (37) is violated no real x; exists and in fact a dry zone develops on the
back side of the rarefaction. In that case, the velocity is not defined and we will arbitrarily set it
to zero.

Looking at the 2-family, we obtain from (34) and using (32):

C> fi(=log(B)) , (38)

for the 2-family to be a simple wave. In that case the solution is

21 ( ¢ 1 +1) (39)
= — (9] _——_— _— —_ 5
X2 S\"WEB 2B 2

from which the admissibility criterion (beyond which a dry zone occurs):

2 (1+VB) > ¢ (40)

as in the previous case. Note that the solution for the shock curves (i.e. x1 and/or x2 negative)
is an implicit function for the x’s that has to be solved numerically. However, a solution of the
shock curve is only necessary in the case that both families are shock curves since otherwise the
problem is entirely defined by specifying the central state from the rarefaction relations and the
variation across the shock is consistently obtained. More specifically, in the mentioned case of



a double shock solution — returning to the height ratio z; as the unknown parameter — we can
choose to solve the following formula that applies to the 1-shock:

1 zn+1 1 z1/B+1 7
fﬁ(zﬁn - fﬁ(zl/Bfl) W\/Efcfo , (41)

by using a Newton iteration, say. With respect to admissibility, the shock curves do not
introduce any further limitation on the initial data. We can now conclude:

The Riemann problem (11) associated with the system (3) has a unique solution if

’U,Rf’u,L<2(CL+CR), (42)

otherwise a dry zone develops in between the initial states. The I1-family of waves is a
simple wave if

f1(og(B)VB < C < 2(1+ vVB) (43)

and otherwise a shock wave. The 2-family is a simple wave if

fi(=1log(B)) < C < 2(1+VB) (44)

and otherwise a shock wave (C and B are defined in (31)).
In practice, one of the following four configurations can arise:

(i) rarefaction—shock,

)
(ii) rarefaction-rarefaction,
(iii) shock-rarefaction,

)

(iv) shock—shock,

which we can now decide from the initial data by applying (43) and (44). The central state Qc
can thus be deduced from equation (36) in cases (i)-(ii) and from equation (39) in case (iii) while
iterating (41) is necessary in case (iv). What is now left to do in order to terminate the solution
is the determination of the limit coordinates of the zones “1” and “2” ( figure 2) and the explicit
variation of variables through the rarefaction curves.

We first remark that the solution to the Riemann problem is completely self-similar with
& = x/t as the similarity variable and as such it can be expressed conveniently in one-dimensional
&-space. In the case of a 1-shock (2-shock) the position of the discontinuity 1,1 = &1¢ (o2 = &2r)
is equal to the shock speed o given by relation (16). Throughout the region covered by a k-
rarefaction curve, we know that the solution is constant along characteristic curves dz/dt = Ay
and that these characteristics are straight lines, i.e. da/dt = & Moreover, we know about the
constancy of the associated k-Riemann invariant I%. Together we obtain:

u1(§) - %§+%(UL+2CL); U2(§> = %§+%(UR72CR);

45
hi(€) = gg(ur+2cr =€), ha(€) = g5(6—ur+2cr)*. )



The zone limits are obtained by calculating the propagation speeds of the bounding character-
istics:
§p1=M(QL) =ug —cr, §o2 = M2 (Qc) = uc + co,
&ic = (Qc) = uc —cc, &or = Aa(QR) = ur + cr.
This completes the solution of the Riemann problem. An explicit algorithm is given in appendix
B. Some examples for different initial data are shown in figure 4.

(46)

3 Finite volume method for the numerical solution of the
flat-bottom case

3.1 Introduction

The most obvious — and perhaps the most successful — choice for the numerical treatment of our
system of equations (1) is the finite volume method. This is because the numerical scheme in-
corporates the notion of “weak solutions” which include discontinuities. As such, a finite volume
method is dealing with certain volume averages of the quantities and with fluxes across cell bound-
aries rather than with a point-to-point discretization of the differential operators (finite difference
method). Hence, the starting point for the discretization is an integral (or weak) formulation of
the equations. As in [7] we first integrate our basic one-dimensional, non-viscous relation (3) over
a spatial domain (a,b),

b
%/a G(z,t)dz = Fla,t) — F(b,t) (47)

and then in time over (n - At, (n + 1) - At):

/a U () e - / U a)de =~ (FQW) - FQQ)) (43)

In the above relation (48) — which is exact — f corresponds to the time average of the flux during

the period of integration. The implications are important: if we suppose some discretization of
our spatial domain into finite volumes V; and define the following spatial average between cell
boundaries (i — 1/2) and (¢ + 1/2),

B 1 i+1/2
Ui = Ax; /¢_1/2 Uz, t)dz )
we obtain from (48):
Q" Q= -at/ax (f(Qi+1/2) - f(Qifl/Q)) ' o

It becomes clear that the temporal variation of the cell-averaged values is due to the time integral of
the cell-flux difference. This statement of physical conservation can be considered as the foundation
for numerical finite volume methods. The main part of the remaining task is to find physically
meaningful numerical approximations to the fluxes f .

3.2 Godunov’s scheme

The idea behind Godunov’s method (cf. [8]) consists in solving analytically the Riemann problems
arising at each cell interface of a cell-wise constant finite-volume scheme (figure). The obtained
solution is again cell-averaged before the following time step. As such, Godunov’s scheme is a
finite volume method

Gt -G =

A
a (

Fiape— ]'—51/2) ; (51)
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where the numerical flux function F¢ is the physical flux computed from the exact solution @(R)
of the individual Riemann problem, taken at the location of the cell-interface, viz.

fgr1/2 = F(Q(R) ($i+1/2)) . (52)

In practice, this means that Q(R) is the value of the solution of the respective Riemann problem
at £ = 0 in local coordinates. For the shallow water equations, this is simply the center state Q. of
the interaction (cf. figure 2) which we have calculated in §2.2. With a few additions, the routine
given in appendix B can thus be transformed into a Godunov solver (see appendix C).

In Godunov’s scheme a restriction of the permissible time step arises from the condition that
neighboring Riemann problems do not interact, i.e. that the maximum signal velocities do not
cover more than half a cell-dimension during a time interval, viz.

Ai.AtS% VY i,  where  A; =max(|\],|ou]) (53)

and o; only makes sense in the presence of a shock in the ith cell.

The Godunov method is overall monotone, i.e. does not give rise to oscillations in the presence
of discontinuities, and it is of formal first order accuracy in time and space. Moreover, the
scheme has the important property of respecting the entropy condition (cf. §2.2) that guarantees
a physically meaningful solution. This fact is not surprising since the essential physics of the
underlying system are built into the numerical method.

Why, then, is this method not largely utilized in practice? Basically, it can become quite
time-consuming due to the iterative solution of each Riemann problem. Moreover, the great detail
of the cell-wise solution is partially lost during the averaging stage so that a simplified approach
is often sufficient.

3.3 Roe’s scheme

A very pragmatic and successful approach has been taken by Roe [9]. The ezact solution to the
linearized Riemann problem

at@"’-’“(@La@R) am@ =0 5 (54)

is constructed. This solution consists of two simple waves since both characteristic fields are
now linearly degenerate (i.e. the relation (12) becomes an equality). The interface flux can be
expressed by incrementing across each wave either from the right or from the left state. Blending
both formulas leads to the well known flux function:

— —

1 = - = — — —
oy = 3 (F(QL) + F(Qr) — |A(QrL,QRr)| - (Qr — QL)) ; (55)
where o o L L
AQr,Qr) = R(QL,Qr) - INQL,Qr)| - R™HQL,Qr) (56)
and R, R~! are the diagonalization matrices and A the diagonal eigenvalue matrix.

The key point of Roe’s scheme is the definition of a sensible linearization (54). The consistency
requirements can be put forth as three conditions

(i) A(Q L,Q r) is hyperbolic and a diagonal form exists.
(i) A(Qr.Qr)=J(Qr) : (57)

—.

(iii) A(@r,Qr) Q] = [F]

Condition (iii), in particular, assures that the numerical flux (55) is exact in the case of a stationary
shock situated in between nodes (), and ()g.
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In order to find the matrix A according to criteria (i)-(iii), we define the following parameter
vector

Z=vh(1,u)T" (58)
which lets us rewrite the variable vector as

—

Q(Z) = (va 21 Z?)T ’ (59)
and the flux vector as B g
F(2) = (21 22, 22 + 3 DT (60)
Using the mean value theorem, B
[abl =a[b] +bla] (61)

the jump of variables can be expressed as [Q] = B[], where

B(Q_El _0> : (62)

z2 Z1

Analogous, the jump of the fluxes is written as [F] = C [2], where

. Z2 Z1
¢= ( 297177 2% ) ‘ (63)

Inserting matrix (62) and (63) into condition (iii) gives:

0 1
A=C-B7!'= — Z3 % , 64

By comparing (64) with equation (4) we notice that Roe’s linear matrix for the shallow water

equations is equivalent to the jacobian J of the continous system under the following change of
variables:

A(@L,@R) = j(@ — @Roe) ) (65)

where @Roe is the vector of variables averaged as follows:

Q’Roe — (E, aﬁ)T
ho=h
- Vhrur + Vhrur (66)
Vhp +vhr
The above result has been obtained by Glaister [10]. The situation is similar in the case of the
Euler equations, as noted in the original paper by Roe [9]. For more complex systems. e.g. those
arising in the context of two-phase flows [11] or resulting from a statistical turbulence model [12],
Roe’s linear matrix cannot be obtained from the jacobian by a simple variable transformation. In
these latter cases, it is sometimes appropriate to resort to a scheme not relying upon the somewhat
restrictive condition (iii) of Roe. One prominent example is the following “VFRoe” scheme.
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Figure 4: Some example Riemann problems for g=2: (a) QL = (1,0), Qr = (.001,0) — rarefa-
cion/shock; (b) @ = (1,1), Gr = (1,—1) — double shock; (¢c) @1 = (10,-50), @z = (10,50)
— double rarefaction. The variation of the height variable h and the flow rate hu is shown as a
function of £ = x/t. The solution has been obtained using the routine given in appendix B.
[width=100
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Figure 5: The steps of Godunov’s scheme for solving a one-dimensional hyperbolic problem:
discretization into cell-wise constant values; exact solution of the ensueing Riemann problems
at the cell-interfaces (subject to a CFL-like condition); subsequent averaging over the cells.
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A Weak solutions of conservation laws and the jump con-
ditions
The present account follows that of Smoller [p. 246 5]. We consider the initial value problem for

a conseration law

uy+ 0y f(u) =0, u(z,0) = up(z). (67)

Let us define a test function ¢(z,¢) which vanishes outside of a compact support and particularly
ont =T,z =aand z=>b (cf. figure 6). Multiplication of (67) by ¢(x,t) and integration for t > 0
over a domain D gives:

/t>0/(“vt+fﬁr)¢dzdt/D/(U,ﬁf,x)aﬁdwdt/ab/OT (ug+ foz)pdadt =0.  (68)

Integration by parts of the time derivative in (68)

/D/u,tqﬁdxdt = /b [uqb]OT dx — /b /OT updadt = — /bu(t =0)¢(t = 0)dx — /D /uqb,tdxdt
a a a (69)

and of the spatial derivative

/D / [ dudt = /0 : (fol di - /D / fo.0 dadt (70)

=0

leads to: .
/ / (g + f.) dddadt + / wo(@)(t = 0,2) dz = 0. (71)
D a

A bounded measurable function u(x,t) is called a weak solution of the initial-value problem (67)
with bounded and measurable initial data uo provided that (71) holds for all ¢ € C}. If u is
continuous C!, then (71) describes a classical solution of (67).

Turning now to the jump conditions, let I'(x,t) be a smooth curve across which u(z,t) has a
jump discontinuity (i.e. a discontinuity in the zeroth derivative). Consider a domain D around
some point P on T' (cf. figure 6 b); ¢(z,t) is a continuous test function with support centered at
P and — as above — zero on the boundaries of D. A weak solution on the domain D satisfies

0= [ [ wos+ so.) dote= [ | [ e+ son) asies [ 2 [ o+ 10, awdr. ()

AN |

a x

Figure 6: The test function ¢ used during the derivation of the class of weak solutions of system
(67) (left) and the notation for the solution of a jump discontinuity around the point P on the
curve I" (right).
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Since u(z,t) is continuous on both sides of T', i.e. in Dy, Dy we have:

/Di/(“‘bat + [0.0) dadt

[ @+ 1010 - {6 uc+ ) | ana
D; N—

=0
_ / /V-Adv, (73)
D;
where:
A = (fo,ud)"
V = (0.,0)T (74)
dv = dxdt. (75)
Applying the divergence theorem gives:
[ [woirsonaa = § aonas
D; aD;
= % (A1n1 + Agng)ds (76)
oD;

where n is the outward normal vector along the closed curve 0D;. The geometric relation between
ds and the normal vector n is such that (cf. figure 7):

nids = dt
nods = —dx. (77)
Therefore we obtain:
/ / (b + fb.0) dedt = 6(fdt — uda). (78)
D; oD;

We can now evaluate the r.h.s. of equation (72) by evaluating expression (78) for the two paths
on the boundaries 9D; and 0Ds; we note that—since ¢ = 0 on dD the line integral is non-zero
only along I'. Then we have:

0 = o(f dt —udz) + o(f dt —udzx)
6D1 aDZ
Q2 Q1
= o(f(uy) dt —u;dex) + o(f (u,) dt — u,. da)
Q1 Q2
Q2 Q2
= o(f(w) dt —uyda) — o(f (u) dt — u,. da)
Q1 Q1
Q2
-1 o([f (w)] dt — [u] dz), (79)

where u; = u(z(t) — 0,¢) and u, = u(z(t) + 0,t) are the values of u on the left and right of the
discontinuity, and the jumps are denoted by [u] = u; — u, and [f(u)] = f(w) — f(ur).

Since the integral in (79) needs to vanish for any ¢, one can conclude:

olu] = [f(w)], (80)

where o = dx/dt is the speed of the discontinuity.
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B Algorithm for analytic solution of flat-bottom Riemann
problem

program kneedeep
o S (e flowtec-|

C solves the riemann problem for st.venant equations (flat bottom)
C analytically by considering the following zones:

@ (e.g. for a rarefaction-shock configuration)

c

c ® €] © (2) (R)

e —

c NMNANWNSW o e

c ARNNNY

c ARANY

c A\ | state q

c A\ | |

c \ | |

c mmmmsssssssssooo—————— —eeee > (x/t)

C————67-————— T
c 12.02.99

C BUGS: -7-

Cm== =B~ —

implicit double precision (a-h,o0-z)

parameter (npoimx=500)

dimension x(npoimx),u(npoimx),fh(npoimx)

logical lvacuum,llsimple,l2simple,lldry,lrdry
parameter (£23=2.40/3.40,f13=1.40/3.d40,f19=1.40/9.40)
character*20 outfile

parameter (iunit=12,outfile=’riemann.dat’)

parameter (g=2.,time=1.d0)
parameter (nnwtmx=20,small=1.d-6,width=1.2d0)

c /* set the two initial states L/R of diaphragnm */

write(*,10)g

write(*,*) ’hlL= 7’

read (*,*)fhL

write(x,*)’ul= 7’

read (*,*)ul

write(*,*) ’hR= 7’

read (*x,*)fhR

Figure 7: The geometrical relation between the inifinitesimal line segment ds and the outward
normal vector n.

18



write(*,*)’uR= 7’
read (*,*)uR
cL=dsqrt (g*fhL)
cR=dsqrt (g*fhR)
if (fhl.ne.0.d0)then
if (fhR.eq.0.d0)then
write(*,*)’dry bed on the right’
lrdry=.TRUE.
endif
B=fhR/fhL
C=(uR-ulL)/cL
else
write(*,*)’dry bed on the left’
11dry=.TRUE.
B=0.d0
C=0.d0
endif

/* check for vacuum (i.e. dry bed) */
lvacuum=.FALSE.

if(2.d0*(1.d0+dsqrt(B)) .le.C)lvacuum=.TRUE.
write(*,*)’appearance of vacuum:’,lvacuum

if (lvacuum)write (*,*) will set velocity arbitrarily to zero’
/* check of which type are the 1- and 2-families */
l1lsimple=.FALSE.

12simple=.FALSE.

if (B.gt.0.d0)

3 check1=f1(dlog(B))*dsqrt(B)

if (checkl.1lt.C.or.lrdry)lilsimple=.TRUE.

if (B.gt.0.d0)
$ check2=f1(-dlog(b))

if (check2.1t.C.or.1l1ldry)12simple=.TRUE.
write(*,*)’1-family:’

if(l1simple)write(*,*) ’simple wave’
if(.not.llsimple.and..not.lldry)write(*,*)’shock’
write(x,*)’2-family:’

if (12simple)write(*,*) ’simple wave’

if (.not.12simple.and..not.lrdry)write(*,*)’shock’

/* solve the 1-family */
if (11simple)then
if (lvacuum.or.lrdry)then
fhC=0.4d0
uc=0.d0
else
x1=-2.d0*dlog((1.d0+dsqrt (B))/2.-C/4.40)
fhC=fhL*dexp(-x1)
CC=dsqrt (gxfhc)
uC=uL+cL*2.d0*(1.d0-dexp(-x1/2.4d0))
write(*,*)’1-rarefaction: hC=’,fhC,’ uC=’,uC
endif
else
if (12simple)then
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111

if (lvacuum.or.1lldry)then

£fhC=0.d0
uc=0.d0
else

x2=-2.d0*dlog(-C/(dsqrt(B)*4.d0)+1.d0/(2.d0*dsqrt (B) )+

.5d0)
fhC=fhR*dexp (-x2)
CC=dsqrt (g*xfhc)
uC=uR-cC*2.d0* (dexp(x2/2.40)-1.40)
write(*,*)’2-rarefaction: hC=’,fhC,’ uC=’,uC
endif
else
/* we have in fact two shocks: need to iterate
z1=1.1d0
do n=1,nnwtmx
zold=z1
z1=zo0ld-funcz1(zo0ld,B,C)/dfuncz1(zo0ld,B)
if (dabs(z1-zold) .le.small)goto 111
enddo
write(*,*) ’newton iteration not converged’,zl,zold
stop
continue
fhC=z1*xfhL
cc=dsqrt (fhc*g)
uC=uL-cL*(z1-1.d0)*dsqrt ((z1+1.d40)/(2.d40*z1))
endif
endif
/* we now know about the center state (c)

/* calculate limits of zone (1) and (2)
/* note: "positions" x** are actually given in "xi/t",i.e.
if (11simple)then
xL1=ul-cL
if (.not.lvacuum.and. .not.lrdry)then
x1C=uC-cC
else
/* limit zone (1) such that vacuum is just reached through
/* the expansion */
x1C=ulL+2.d0*cL
endif
else
/* find shock position: calc shock speed from jump cond.
/* note: in this case, the zone has zero width
if (.not.1lldry)then
z=fhC/fhL
write(*,*)’1-shock: hL/hC=’,z
sigma=(uC*xz-ul)/(z-1.40)
xll=sigma
x1C=sigma
else
/* leave this bound undefined */
endif
endif
if (12simple)then

20

*/

*

*

/

/

velocities */

*/

*/
*/



x2R=uR+cR
if (.not.lvacuum.and. .not.1lldry)then

xC2=uC+cC
else
xC2=uR-2.d0*cR
endif
else
if (.not.lrdry)then
z=fhR/fhC
write(*,*)’2-shock: hR/hC=’,z
sigma=(uR*z-uC)/(z-1.40)
x2R=sigma
xC2=sigma
else
c /* since nothing happens in the dry zone, extend it a bit from (1) (C) */
x2R=x1C+dabs (.1d0*x1c)
xC2=x2R
endif
endif
c /* get back to the case of a dry bed on the left */
if (11dry)then
x1C=xC2-dabs (.1d0*xC2)
xll=xlc
endif
C /* set a discrete grid, a bit wider than interesting zone */

f1x=(x2R-xL1)
foverlap=(width-1.d0)/2.4d0
do i=1,npoimx
x(1)=(xL1-foverlap*flx)+
$ dfloat (i-1)*flx*width/dfloat (npoimx-1)
enddo

@ /* set the variables at grid points */
do i=1,npoimx

if (x(i).le.xL1)then
u(i)=ul
fh(i)=fhl

elseif (x(i).le.x1C)then
u(i)=£f23*x (i) +f13* (uL+2.d0*cL)
fh(i)=£19/g* (uL+2.d0*cL-x (1)) **2

elseif (x(i).le.xC2)then
u(i)=uC
fh(i)=fhC

elseif (x(i).le.x2R)then
u(i)=f23*x(i)+f13* (uR-2.d0*cR)
fh(i)=£19/g* (x (i) -uR+2.d0*cR) **2

else
u(i)=uR
fh(i)=fhR
endif
enddo
c /* output */
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open(iunit,file=outfile)
write(iunit,112)
do i=1,npoimx
if (fh(i) .ne.0.d0)then
froude=u(i)/dsqrt(g*fh(i))

else
froude=0.d0
endif
write(iunit,*)x(i),x(i)*time,fh(i),u(i),fh(i)*u(i),
$ dsqrt (fh(i)*g),
$ u(i)+2.d0*dsqrt (fh(i) *g) ,u(i)-2.d0*dsqrt (fh(i)*g),
$ froude
enddo

close(iunit)

c /* format statements */
10 format (’Riemann problem: L) | (R) ; gravitational ’,
$ ’accel. = ?,e8.3)
112 format(’#1:x/t 2:x 3:h 4:u 5:h*u 6:c 7:u+2c 8:u-2c 9:Froude’)

c /* finalize */
stop
end

C——==B 7 ===

double precision function f1(x)
implicit double precision (a-h,o0-z)

c
if(x.1t.0.d0)then
f1=-(dexp(-x)-1.d0)*dsqrt ((dexp(-x)+1)/(2.d0*dexp(-x)))
elseif (x.gt.0.d0)then
£1=2.d0*(1.d0-dexp(-x/2.40))
else
£1=0.d0
endif
end
L S
double precision function f2(x)
implicit double precision (a-h,o0-2z)
c
if(x.1t.0.d0)then
f2=(dexp(x)-1.d0)*dsqrt ((dexp(x)+1.d0) /(2.d0*dexp(x)))
elseif(x.gt.0.d0)then
£2=2.d0* (dexp(x/2.d0)-1.d0)
else
£2=0.d0
endif
end
R S
double precision function funcz1(z,B,C)
implicit double precision (a-h,o0-2z)
c
funczl= -(z-1.D0)*dsqrt (2.D0)*dsqrt ((z+1.D0)/z) /2.D0-
$ (z/B-1.D0) *dsqrt (2.D0) *dsqrt ((z/B+1.D0) /z*B) *
$ dsqrt(B)/2.D0-C
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double precision function dfunczl(z,B)
implicit double precision (a-h,o0-z)

c
dfunczl= -dsqrt(2.D0)*dsqrt((z+1.D0)/z)/2.D0-
3 (z-1.D0)*dsqrt (2.D0) /dsqrt ((z+1.D0) /z) *
$ (1.D0/z-(z+1.D0) /z**2) /4.D0-1.D0/dsqrt (B) *
$ dsqrt (2.D0)*dsqrt ((z/B+1.D0) /z*B) /2.D0-
3 (z/B-1.D0) *dsqrt (2.D0) /dsqrt ((z/B+1.D0) /z*B) *
$ dsqrt (B)*(1.D0/z-(z/B+1.D0) /z**2%B) /4.D0
c
end
c————67-————————— -~

C Algorithm for numerical solution of flat-bottom Riemann
problem by different finite volume methods of Godunov

type

program godunov
o S flowtec—|

c solves the flat-bottom st.venant equations numerically in

c one dimension (dam-break problem) by a finite-volume

C method using:

@ ischeme fluxes

c 1 godunov (exact riemann solver)

c 3 roe (1in. riemann solver, flux-diff-split)
c 2 gallouet (lin. riemann solver, var-diff-split)
=BT — flowtec—|
c 12.05.99

c BUGS: -7-

Cm== =B~ ——m T

implicit double precision (a-h,o0-z)
parameter (nmax=400,g=2.d0)

dimension g(nmax,2),rhs(nmax,2),flux(2)
parameter (cf1=.4d0)

parameter (h11=1.d0,ul1=0.d0,hrr=5.d-1,urr=0.40)
parameter (f1x=1.d0,tfin=.1d0,nitmx=50000)
parameter (ischeme=3)

time=0.d0
nit=0
dx=flx/dfloat (nmax)
do i=1,nmax
rhs(i,1)=0.40
rhs(i,2)=0.40
enddo
c /* set the initial state (diaphragm at center)*/
do i=1,nmax/2
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L3

q(i,1)=h11l
q(i,2)=ull*hll
enddo
do i=nmax/2+1,nmax
q(i,1)=hrr
q(i,2)=urr*hrr
enddo

/* main time loop */
continue
nit=nit+1

dt=1.d35

/* flux balance for each cell-interface */
do 20 icell=1,nmax-1

/* solve interfacial riemann problem analytically */
if (ischeme.eq.1)then

call riemann(q(icell,1),q(icell,2)/q(icell,1),
q(icell+1,1),q(icell+1,2)/q(icell+1,1),

g,
fhc,uc,flamx)

elseif (ischeme.eq.2)then

call gallouet(q(icell,1),q(icell,2),
q(icell+1,1),q(icell+1,2),
g,

fhc,uc,flamx)

elseif (ischeme.eq.3)then

call roeflux(q(icell,1),q(icell,2),

q(icell+1,1),q(icell+1,2),
g,
flux,flamx)
else
write(*,*)’small problem here...’,ischeme
endif

/* calculate maximum GLOBAL time step */
dt=dminl (dt,dx*cfl/flamx)
if(dt.eq.0.d0.or.flamx.eq.0.d0)then

write(*,*)’icell =’,icell,dx,cfl,flamx
stop
endif

/* accumulate rhs fluxes */
if (ischeme.eq.l.or.ischeme.eq.2)then
do ic=1,2
add=dflux(fhc,uc,g,ic)
rhs(icell,ic)=rhs(icell,ic)+add
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rhs(icell+1,ic)=rhs(icell+1,ic)-add
enddo
else
do ic=1,2
rhs(icell,ic)=rhs(icell,ic)+flux(ic)
rhs(icell+1,ic)=rhs(icell+1,ic)-flux(ic)

enddo
endif
20 continue
time=time+dt
write(*,*)’time = ’,time, > dt= ’,dt, ’ tfin = ’,tfin
if(time.gt.tfin.or.nit.gt.nitmx)then
call output(q,time,flx,nmax,g)
goto 10
endif
c /* update the variables */
do ival=2,nmax-1
do ic=1,2
q(ival,ic)=q(ival,ic)-dt/dx*rhs(ival,ic)
rhs(ival,ic)=0.d0
enddo
enddo
C /* check for non-physical values */
do i=1,nmax
if(q(i,1).1t.0d0)then
WRITE(*,*) ’negative height: ’,i,q(i,1),q(i,2)
stop
endif
enddo
goto 11
10 continue
stop
end
Cm= ==~ flowtec—|
subroutine output(q,time,flx,ni,g)
implicit double precision (a-h,o0-z)
dimension q(ni,2)
open(12,file=’sol.dat’)
write(12,100)time,ni
do i=1,ni
write(12,*)dfloat(i-1)/dfloat(ni-1)*flx,
$ q(i,1),q9(i,2)/q(i,1),q(i,2),sqrt(gxq(i, 1))
enddo
close(12)
100 format(’# 1:x 2:h 3:u 4:h*u 5:c’)
return
end
L ¥ flowtec—|

subroutine riemann(fhl,ul,fhr,ur,g,fhc,uc,flamx)
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Cmm =BT —mm o flowtec-|

C solves the riemann problem for st.venant equations (flat bottom)
C analytically by considering the following zones:

C (e.g. for a rarefaction-shock configuration)

c

c ® €D) (© (2) (R)

P —

c NMNANWNSN e

c AN

c ARNNN

c ANNY | state q

c A\ | |

c \ | |

c  mmmmmmmmmmm—————ee—— e > (x/t)

Cm= =B~ —
c 12.02.99

c BUGS: -7-

C———=67-—————— T

implicit double precision (a-h,o0-z)
logical lvacuum,llsimple,l2simple,lldry,lrdry
parameter (£23=2.40/3.d40,f13=1.40/3.d40,f19=1.40/9.40)

c parameter (g=2.,time=1.d0,x0=2.5d0)
parameter (nnwtmx=20,small=1.d-6,width=1.2d0)

lrdry=.FALSE.
11ldry=.FALSE.
cL=dsqrt (g*fhL)
cR=dsqrt (g*fhR)
if (fhl.ne.0.d0)then
if (fhR.eq.0.d0) then
c write(*,*)’dry bed on the right’
lrdry=.TRUE.
endif
B=fhR/fhL
C=(uR-uL)/cL
else
c write(*,*)’dry bed on the left’
11ldry=.TRUE.
B=0.d0
C=0.d0
endif
c /* check for equal states on left and right */
if (fhr.eq.fhl.and.ur.eq.ul)then
fhc=fhr
uc=ur
flamx=dmax1(dabs (ur+sqrt(gxfhr)) ,dabs (ur-sqrt (g*fhr)),
$ dabs (ul+sqrt(g*fhl)) ,dabs(ul-sqrt (g*fhl)))
goto 112
endif

c /* check for vacuum (i.e. dry bed) */

lvacuum=.FALSE.
if(2.d0*(1.d0+dsqrt(B)) .le.C)1lvacuum=. TRUE.
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c write(*,*)’appearance of vacuum:’,lvacuum

c if (lvacuum)write(*,*) ’will set velocity arbitrarily to zero’
/* check of which type are the 1- and 2-families */
l1lsimple=.FALSE.
12simple=.FALSE.
if (B.gt.0.d0)

3 check1=f1(dlog(B))*dsqrt(B)
if (checkl.1lt.C.or.lrdry)llsimple=.TRUE.
if (B.gt.0.d0)

$ check2=f1(-dlog(b))
if (check2.1t.C.or.1ldry)12simple=.TRUE.
write(*,*)fhl,ul,fhr,ur
write(*,*)’1-family:’
if(lisimple)write(*,*)’simple wave’
if(.not.llsimple.and..not.lldry)write (*,*)’shock’
write(*,*)’2-family:’
if (12simple)write(*,*) ’simple wave’
if(.not.12simple.and..not.lrdry)write (*,*)’shock’

O o0 o0 o0 o0 o0

c /* solve the 1-family */
if (11simple)then
if (lvacuum.or.lrdry)then
fhC=0.d0
uc=0.d0
else
x1=-2.d0*dlog((1.d0+dsqrt (B))/2.-C/4.40)
fhC=fhL*dexp(-x1)
CC=dsqrt (gxfhc)
uC=uL+cL*2.d0*(1.d0-dexp(-x1/2.4d0))
c write(*,*)’1-rarefaction: hC=’,fhC,’ uC=’,uC
endif
else
if (12simple)then
if (lvacuum.or.1lldry)then
fhC=0.d40
uc=0.d0
else
x2=-2.d0*d1log (-C/ (dsqrt (B) *4.d0)+1.d0/ (2.d0*dsqrt (B) )+
$ .5d0)
fhC=fhR*dexp(-x2)
CC=dsqrt (g*xfhc)
uC=uR-cC*2.d0* (dexp(x2/2.40)-1.40)
c write(*,%*)’2-rarefaction: hC=’,fhC,’ uC=’,uC
endif
else
c /* we have in fact two shocks: need to iterate */
z1=1.14d0
do n=1,nnwtmx
zold=z1
z1=zo0ld-funcz1(zo0ld,B,C)/dfuncz1(zo0ld,B)
if (dabs(z1-zold) .le.small)goto 111
enddo
write(*,*) ’newton iteration not converged’,zl,zold
stop
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111

continue
fhC=z1*xfhL
cc=dsqrt (fhc*g)
uC=uL-cL*(z1-1.d0)*dsqrt ((z1+1.d40)/(2.d40*z1))
endif
endif
/* we now know about the center state (c)

/* calculate limits of zone (1) and (2)
/* note: "positions" x** are actually given in "xi/t",i.e.
if (11simple)then
xL1=ul-cL
if (.not.lvacuum.and. .not.lrdry)then
x1C=uC-cC
else
/* limit zone (1) such that vacuum is just reached through
/* the expansion */
x1C=ulL+2.d0*cL
endif
else
/* find shock position: calc shock speed from jump cond.
/* note: in this case, the zone has zero width
if (.not.1lldry)then
z=fhC/fhL
write(*,*)’1-shock: hL/hC=’,z
if (dabs(z-1.d0) .gt.small)then
sigma=(uC*z-uL)/(z-1.d0)
else
sigma=ul-sqrt (g*fhl)
endif
xll=sigma
x1C=sigma
else
/* leave this bound undefined */
endif
endif
if (12simple)then
x2R=uR+cR
if (.not.lvacuum.and. .not.1lldry)then
xC2=uC+cC
else
xC2=uR-2.d0*cR
endif
else
if (.not.lrdry)then
z=fhR/fhC
write(*,*)’2-shock: hR/hC=’,z
if (dabs(z-1.d0) .gt.small)then
sigma=(uR*z-uC)/(z-1.d0)
else
sigma=ur+sqrt (g*fhr)
endif
x2R=sigma
xC2=sigma
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else
/* since nothing happens in the dry zone, extend it a bit from (1)(C) */
x2R=x1C+dabs (.1d0*x1c)
xC2=x2R
endif
endif
/* get back to the case of a dry bed on the left */
if (11dry)then
x1C=xC2-dabs(.1d0*xC2)
xll=xlc
endif
/* compute maximum wave speed from limiting velocities xL1,x2R */
flamx=dmax1 (dabs (xL1) ,dabs (x2R))

/* finalize */
continue
return

N et flowtec-|

N T ettt flowtec—|

solves the riemann problem for st.venant equations (flat bottom)
in its linearized form, cf Buffard, Gallouet, Herard, CRAcadSci,
t.326,Serie I,p.385-390, 1998

12.02.99
BUGS: -7-

implicit double precision (a-h,o0-z)

logical lvacuum

parameter (£23=2.40/3.d40,f13=1.40/3.d40,f19=1.40/9.40)
parameter (small=1.d-6)

if (fhl.ne.0.d0)then
ul=ql/fhl
else
ul=0.d0
endif
if (fhr.ne.0.d0)then
ur=qr/fhr
else
ur=0.d0
endif
cl=dsqrt (g*fhl)
cr=dsqrt (g*fhr)
um=(ul+ur)/2.d0
fhm=(fhr+fhl)/2.d40
cm=(cl+cr)/2.d0

/* check for existence of dry bottom */
if ((ul-ur).ge.2.d0*(cl+cr))then
lvacuum=.true.
uc=0.d0
cc=0.d0
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flamx=small
goto 111
endif

c /* intermediate state in non-vacuum case */
uc=(um-(cr-cl))
cc=(cr+cl)/4.d0%*(2.d0-(ur-ul) /(cr+cl))
flamx=dmax1 (dabs (um+cm) ,dabs (um-cm))

111 continue
fhc=cc*cc/g

c
return
end
Cm== =B~ I
subroutine roeflux(fhl,ul,fhr,ur,g,rflux,flamx)
Cm =B — flowtec—|
@ solves the linearized riemann problem for st.venant equations
c (flat bottom) by using Roe’s method (J.Comp.Physics, vol.43,1981)
C x fluxes are passed upon exit in vector rflux(1:2)
Cm== =B~ ——— I
c 21.05.99
c BUGS: -7-
C————67-———— T

implicit double precision (a-h,o0-z)

dimension a(2,2),cflux(2) ,uflux(2),diffv(2),rflux(2)
logical lvacuum

parameter (£23=2.d40/3.d0,f13=1.40/3.d0,£19=1.d0/9.4d0)
parameter (small=1.d-6)

cl=dsqrt (g*xfhl)
cr=dsqrt (g*fhr)

c /* roe’s average for shallow water */
fhc=(fhl+fhr)/2.d40
uc=(dsqrt (fhr) *ur+dsqrt (fhl) *ul) / (dsqrt (fhr)+dsqrt (fhl) )
cc=dsqrt (g*xfhc)

c /* diagonalization |A|=Rx|lambda|*R1 */
call aroe(fhc,uc,cc,a)

c /* variable difference vector */
diffv(1)=fhr-fhl
diffv(2)=fhr*ur-fhl*ul

c /* centered flux */
do i=1,2
cflux(i)=dflux(fhr,ur,g,i)+dflux(fhl,ul,g,i)
enddo
C /* evaluate roe’s flux: f=(fl+fr-|al*(qr-ql))/2 */
do i=1,2
rflux(i)=cflux(i)
do j=1,2
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rflux(i)=rflux(i)-a(i, j)*diffv(j)

enddo
rflux(i)=rflux(i)/2.40
enddo
@ /* estimate the maximum signal velocity */
flamx=dmax1 (dabs (uc+cc) ,dabs(uc-cc))
c
return
end
Cm === — = |
subroutine aroe(hc,uc,cc,a)
Cm=== B === flowtec—|
c calculates roe’s matrix
Cmm =T = m = |
implicit double precision (a-h,o0-z)
dimension a(2,2),r(2,2),r1(2,2),flambda(2)
Cm ===~
c /* diagonalization matrix r */
r(1,1)=1.d0
r(1,2)=1.d0
r(2,1)=uc-cc
r(2,2)=uc+cc
c /* inverse rl */
r1(1,1)=C(uc+cc)/(2.d0*cc)
r1(1,2)=-1.40/(2.d0*cc)
r1(2,1)=(cc-uc)/(2.d0*cc)
r1(2,2)=1.d40/(2.d40%*cc)
c /* eigenvalues */
flambda(1)=uc-cc
flambda(2)=uc+cc
c /* matrix*diag*matrix multiply */
do i=1,2
do j=1,2
a(i,j)=0.d0
do k=1,2
a(i,j)=a(i,jl)+r(i,k)*dabs(flambda(k))*ri(k,j)
enddo
enddo
enddo
c
return
end
C—— === e
double precision function f1(x)
implicit double precision (a-h,o0-z)
c

if(x.1t.0.d0)then

f1=-(dexp(-x)-1.d0)*dsqrt ((dexp(-x)+1)/(2.d0*dexp(-x)))
elseif (x.gt.0.d0)then

£1=2.d0*(1.d0-dexp(-x/2.d40))
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double precision function f2(x)
implicit double precision (a-h,o0-z)

c
if(x.1t.0.d0)then
f2=(dexp(x)-1.d0)*dsqrt ((dexp(x)+1.d0)/(2.d0*dexp(x)))
elseif(x.gt.0.d0)then
£2=2.d0* (dexp(x/2.d0)-1.d0)
else
£2=0.d0
endif
end
oL ettty
double precision function funcz1(z,B,C)
implicit double precision (a-h,o0-z)
c
funczl= -(z-1.D0)*dsqrt (2.D0)*dsqrt ((z+1.D0)/z) /2.D0-
3 (z/B-1.D0) *dsqrt (2.D0)*dsqrt ((z/B+1.D0) /z*B) *
$ dsqrt(B)/2.D0-C
c
end
Cmm =T ==
double precision function dfuncz1(z,B)
implicit double precision (a-h,o0-z)
c
dfunczl= -dsqrt(2.D0)*dsqrt((z+1.D0)/z)/2.D0-
$ (z-1.D0)*dsqrt (2.D0) /dsqrt ((z+1.D0) /z) *
$ (1.D0/z-(z+1.D0) /z**2) /4.D0-1.D0/dsqrt (B) *
3 dsqrt (2.D0) *dsqrt ((z/B+1.D0)/z*B) /2.D0O-
3 (z/B-1.D0) *dsqrt (2.D0) /dsqrt ((z/B+1.D0) /z*B) *
$ dsqrt (B)*(1.D0/z-(z/B+1.D0) /z**2%B) /4.D0
c
end
=BT — T
double precision function dflux(h,u,g,i)
implicit double precision (a-h,o0-z)
c
if (i.eq.1)then
dflux=h*u
elseif(i.eq.2)then
dflux=u*uxh+g*h*h/2.d0
else
write(*,*) ’problem here:..’,i
stop
endif
c
end
S
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