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Wavelet Analysis of Turbulent Flow

Motivation & scope

turbulent flow is:

e multi-scale, bearing coherent structures
e inherently 3D

e described by vector quantities

e in general statistically inhomogeneous

wavelet bases:
e allow to decompose a signal w.r.t. space
& scale simultaneously

towards:

e wavelet bases suiting the demands of
turbulence

e significant quantities derived from the raw
coefficients

e feasible computation
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Outline

| Generalities of wavelet transform
Il Wavelets for the interval
[1l Multi-dimensional approaches
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Wavelet Analysis of Turbulent Flow | Generalities

What is a wavelet ?

admissibility: function with zero-mean

localization: in physical & frequency space

: 2
e.g. Morlet wavelet (x) = ! .e=2"/2

=

VN
=

N——"

05

e complex-valued
e barely admissible
e exponential decay



Wavelet Analysis of Turbulent Flow | Generalities

Continuous wavelet transform

scalar product

flab) = [0 (222) se)eo

e scale factor a > 0
e translation b € R

wavelet windowed Fourier

-
s



Wavelet Analysis of Turbulent Flow | Generalities

Discrete wavelet transform

e wavelet translated & dilated dyadically

Vii(z) =21/ (272 —i)  ji€Z
orthogonality:
< Pjiy Y >= /%‘mkz@ = 0,,0il

e definition of a scaling function

/SO(ZC)d:C =1, = 2112 (2j:13 — z)
orthogonality to wavelets & own translates:

0, k>3
Oil

< Yji, Vr1 >
< Yji, Pl >

e various families v, ¢ exist



Wavelet Analysis of Turbulent Flow | Generalities

Multi-resolution analysis

e scaling fcts. generate nested subspaces:

V; = span{yjiticz
VoCVi C ...‘/}C‘/}-+1C,,,

e wavelet fcts. are complement spaces:

W; = span{tji}iez
Vien = VoW,

low-pass/band-pass filters:
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Wavelet Analysis of Turbulent Flow | Generalities

Multi-resolution analysis
(cont’d.)

particularly:  L?*(R) = V;® @Wj
g2J
= decomposition of a signal:

Z< fieri > @i

1E€7Z

+ ) ) < f, wﬁ>wﬂ

91>J 1€Z

e energy (Parseval)
= [P =Y S Y
i i

e NV to N transform



Wavelet Analysis of Turbulent Flow | Generalities

Mallat algorithm

e identify a low-pass filter related to o,
a band-pass filter from 2:

¢7¢—>H7G

e algorithm: from small to large scales

__________________ o A
y | 2
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> Cj+1 O Cy
e
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e operation count O(N log,(N))



Wavelet Analysis of Turbulent Flow | Generalities

Choice of basis functions ¢,

e discrete-orthogonal vs. continuous

(orthogonality w.r.t. weight unity)

e real-valued vs. complex

e localization (space & scale)
® symmetry
e vanishing moments

® non-compact vs. compact




Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Bounded signal: problem

e Fourier techniques do not work
e artifacts at boundary:

e boundary region might be particularly
interesting (e.g. wall-bounded flow)

= need orthogonal basis on [z7, z3]

o attempts with cos-mapping failed
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Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Polynomial wavelets

Fourier

Vji(x) = Z ijz'(k)elkx reR/Z
k

Orthopoly

Vii(x) = Zaji(k')Pk-(ZC) r e |[—1,1]
k

with f P. P w(:z:) dr = 0y

Fischer & Prestin (1997):

e use repro. kernel poly. K, =) Py(z)P.(y)
k=0
i = K@, 5" ), s = Ko, yi") = Ko, ™)

o setting P, = Uy (Chebyshev Il) yields:

< @i, P51 >w = 04
< Vjis Yl >w = 0 0jm
< ijiawml > = 0 (m > ])

e however: w(x) =1 — z?
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Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Legendre wavelets

e a;;(k) to fulfill orthogonality of ¥,;(x)

e choice of P, determines the weight w(x)

— set instead P, = Ly (Legendre)
(Prestin, pers. comm. 2001)

= w(x) = 1 as desired

2J |
J
pji(x) =CEY Uy ™) -k +1/2 - Li(a)
k=0
i=0...2
oJ+1
Yii(z) = CL Y Uil vk 1/2 - ()
k: 2741 '
i=0...29 -1

with zeroes 4" = — cos ((’:j)lw)
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Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Legendre wavelets — shape

10
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204 /SN J

e no strict translational invariance
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Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Legendre wavelets — decay
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scale index 7 =7, posxition 1= 64,117

e ‘energy’ contained in tails is small
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Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Legendre wavelets — MRA
e propose (non-classical) MRA, Lo([—1,1])

f(x;)) = coopoo(x) + corpor(x;)
J 271

+ > djibjia)

=0 =0

e numerical convergence of the approximation

1

0.01 |
0.0001 |
1le-06 |

1le-08

error

le-10 |
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le-16

J+1

o energy: [ f(z)%dz=c3y+ck + Y di

J5%
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Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Visualization: scalogram
classical: scale ~ 277

-1 T +1

here: centers are on cos-stretched grid
scale s;; = sin (M) sin (W—/Q)

27141 2J+1
—loga(sj;)
5
L o
0 o
-1 x +1
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Wavelet Analysis of Turbulent Flow

[l Wavelets for the interval

Artificial signal: sine
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e reading of scale, even if non-periodic
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Wavelet Analysis of Turbulent Flow

[l Wavelets for the interval

Artificial signal: bump
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e scale & localization of bump
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Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Real signal: plane channel flow

1

0.5¢

—log,(s54)
—

* w0 il i |

e snapshot, Re, = 590, streamwise velocity

fluctuations, wall-to-wall
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Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Local energy spectrum

e define power spectral density

2
E(k;,x.) = AJ;: (closest-to-x. index gives i.)
j

and wavenumber or “scalenumber”

1
kj = —

Sjic

previous channel data:

18-02 T LB RR | T LB RR | T LB R |

le-04

le-06

1le-08

le-10
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Wavelet Analysis of Turbulent Flow Il Wavelets for the interval

Future tasks

e improve localization properties in physical
space (presently: decay ~ x71)

e conceive a faster algorithm for the
transform (presently: O(N?))
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

Multi-D: General approaches

(A) genuinely multi-D basis

in iy (%)

(B) | tensor product of 1D bases

W (@, y) = P,(2) 15,0, ()

e scales are “scrambled”

(C) | tensor product of 1D MRA's

O (@y) = Ba(@) P, (y)
O (@,y) = V(@) 05,1)
@Df;i;y(ﬂ?ay) = %,im(x)'%,iy(y)

e scale index j controls refinement in both
directions
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

2D example: hybrid MRA

Q=R/Z x |—1,+1]

NONN N N N N

| Q
————————————————— NSNS NSNS NN

x: periodic spline wavelets
(Perrier & Basdevant 1989)

y: Legendre wavelets

e |ocalization properties differ in z, y
e scale is function of position in y: s,(7, ;)
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

2D coefficient scheme (C)

dj_172 L
72 //Sy
J—1.1] 41,3
Sx
1 R

bitmap example:

signal //

vertical
features

diagonal
features

horizontal
features
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Wavelet Analysis of Turbulent Flow

[l Multi-D bases

2D coefficient scheme (B)

(previous) bitmap example:

/

/

= Ja
I
! |

Jy -

/

J

/

e select scales separately (aspect ratio)
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

Vortex dipole rebound

Re = =771

e simulation: 256 Fourier x 300 B-splines
e spectral interpolation upon L-G-L grid

e analysis with 256 periodic spline wavelets
X 257 Legendre wavelets

26



Wavelet Analysis of Turbulent Flow Il Multi-D bases

Slice from plane channel flow

b,
Re. = ~2T — 590

vV

streamwise velocity fluctuations

(mean flow)

e simulation: 600 Fourier x 385 Chebyshev
e spectral interpolation upon L-G-L grid

e analysis with 512 periodic spline wavelets
X 513 Legendre wavelets
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

Channel: plain coefficient
scheme

S

e interpretation not obvious

e need derived quantities
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Wavelet Analysis of Turbulent Flow

[l Multi-D bases

Slice from plane channel flow

i = 5
si = 58
max|d] = 3.5-107°
Sd?2 = 87-107% %
]
2= s
|
]
[ |
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Wavelet Analysis of Turbulent Flow

[l Multi-D bases

S
IS
"
&
I

29
1.7-1073
2.2.10"4

= — — = ]
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

Slice from plane channel flow

j = 7
si = 14

max |d| = 7.7 10~4
Sd? = 2.8.107°

i = 8

sj; = 7
max|d] = 1.2-10"%
Sd? = 16-107°
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

Local energy spectra

e define local 2d power spectral density

(1)
E(ij,]ij,llf,y) = Akwc’Ay;c Izt Iy
Jx Jy

-15|

10
107° 107 107
kT
Jy
kT ={4.3.-1073,86-1073,1.7-1072,3.5-1072,6.9- 10" 2,0.14}

Jx
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Wavelet Analysis of Turbulent Flow

[l Multi-D bases

10

Local energy spectra

point A

10

10

Jy
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

Intermittency index

e define a measure of scale-wise relative
energy

2
.75137.7y )
Z ZClﬁc>z,yc

azl

I(8y,8y,2,Y) =

Z Z (dzic?gyc ))2/ NyTg

Laeylye O

&
D e m®,
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Wavelet Analysis of Turbulent Flow

[l Multi-D bases

Intermittency index

sy =29, s ~ 39, max(I) = 44

Yy
g 7 =
o S
82_215, s;_z19, max(I) = 191
g TTh G ¥ T . 3@
Yy
Q
7 INSE T 4 8 .8
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

Statistics: characteristic
wall-normal length scales

e define time-averaged 2d power spectral
density, fct. of wall-distance

oJr _q < djx,]y(ua)djxa]y(uﬁ) >

< Bag(ju, Jy,y) >= 27 Z - yAk AZ y
ix=0 e

e define char. length of “energetic’ scales
| < Baplivsdiw) > 1
L2 (jy,y) = 20

/ < Eaﬁ(jxajyvy) > dky
0

e define char. length of “dissipative” scales
2 / < BaplGe jyry) > k2 dk,
—< _ Jo

(zgﬁ(jx,y)) = ~ —
/ < Eog(Jz: 3y, y) > dky
0
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Wavelet Analysis of Turbulent Flow

[l Multi-D bases

Wall-normal energetic scales
+

600 -

500 -

L11+ 300

200

100

Sz
streamwise velocity uq

463
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500
400
300

22+
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200+

100~

150 200 250 300 350 400

yt

e mild y-dependence; L', L>* similar
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

Wall-normal dissipative scales
+

s
300 . . x
streamwise velocity uq

_ — 3707

- 1854
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e stronger y-dependence; £,', (2% similar
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Wavelet Analysis of Turbulent Flow [l Multi-D bases

Recap: multi-d bases

e extension of discrete transform by tensor
product of 1d functions

e analysis/visualization more intricate

e method (C): qualitative; directional index
and aspect ratio interfere

e method (B): preferred; direction through
sole aspect ratio

e diagnostic tools: 2d local spectra,
intermittency index, integral scales, ...
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Wavelet Analysis of Turbulent Flow IV Vector quantities

Transform of vector quantities

standard: use scalar wavelets for each
component f;(x) of vector field f(x)

divergence-free data: (e.g. incompressible
flow)

e filtered field does not remain div-free

e analysis of mode-wise non-linear transfer
processes (e.g. energy, enstrophy) not
possible

= need genuinely div-free wavelets

40



Wavelet Analysis of Turbulent Flow IV Vector quantities

Helical wavelets, Kishida (2000)

(i) helical decomposition of Fourier comp.
(k) = fih (k) + f-h () (+oho(K))
(ii) “helical pull-up” (k) = ¢hy(k)

= union of pull-ups of wavelet basis
£ =3 ba (), fr= [ £60) 46, (x)dx

o indices A=1{j;4;1<qg<7;:sc{+,—}}
e div-free (mode-wise): V- ,(x)=0

simple algorithm:

(i) FFT forward f(x) — f(k)

(i) scalar product  h*(k) - f(k)

(i) FFT backwards h*(k) - f(k) — fs(x)
) fast (scalar) WT  fy =< f,, ¢, >
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Wavelet Analysis of Turbulent Flow IV Vector quantities

Helical wavelets & filtering

e triply-periodic physical space

here: used together with spline wavelets
e |ocalization similar

e compression properties similar

e scale filtering:

scalar wavelets (divergence!) helical wavelets

enstrophy of freely-decaying, homogeneous,
isotropic turbulence, Rey = 20, N = 643,
scale of filter: s; = 0.7\ (band-pass).

42



Wavelet Analysis of Turbulent Flow IV Vector quantities

Helical wavelets & non-linear
transfer

evolution of energy of individual mode “a

die® — vu? Z u? / P - V2pidx =
d

. a b, c a (.1b c
U zb:zc:uufw (gbv V)wd%

M

abc

e “balancing pair” (analog Fourier triad)
Mabc + Mcba =0
transfer of energy between a < ¢, but

depending on b

In practice: size prohibitive for evaluation

—— need a priori reduction
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Wavelet Analysis of Turbulent Flow IV Vector quantities

Inter-scale energy transfer

reduce over: position, direction, helicity

uld(x) =3, ; vt 9t (x)

non-linear term:

NL; ==, fu(j) . (u(k) . v) uDdx

. -3
=5 (=~ 0.8\ x10
j— ~ . 4F ‘
6 v
/.
//\\\\\\ .
RN 0 2 4 6 8
//\\\\1 i
gy \\\\\I
’l/// Ay
| \ V|
iy ‘g
4 RN P
Uy 7,0
'&E l\\\\\\/////,:
Py
- \ NENAV AR
() R
\ Ny
go RN
o 2 o)
1

"from-mode” [

forced, homogeneous, isotropic turbulence,
R6>\ = 150, N = 5123.
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Wavelet Analysis of Turbulent Flow IV Vector quantities

Work in progress — extensions

e analyze enstrophy budget:
separate advection from vortex stretching

e use different reduction schemes:
e.g. localized in space, conditioned upon
certain “events’
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Wavelet Analysis of Turbulent Flow V Implementation

Parallel version of Mallat’s
algorithm

e huge datasets from 3D simulations
(5123 modes)

e multi-processor machines (suppose 2™
procs)

e “long” filters: work in Fourier space

ingredients: e FFT
e convolution
e down-/upsample

additionally: e transpose of data

e vary number of active
processors
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Wavelet Analysis of Turbulent Flow V Implementation

Distribution of data/work

(i) use classical “slice” data model

‘z-cut’ 'y-cut’

Iz

Z

(ii) at each step of Mallat algorithm,
data-size is halved
—— need to de-activate processors

1 2 3 45 6 7 i

logo(N)—1 © e e e e e e e
3 ® © e o o o o o
2 ® O e O e O e O
1 @ O O O e O O O©
0 @ O O O O O 0o o

scale j
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Wavelet Analysis of Turbulent Flow V Implementation

Performance

(i) memory

e nearly inv. proportional to no. procs n,
e bias scales as An = (n2 —1)-7/3
e retrieval scheme for individual coefficients

(ii) execution

e solid speed-up (e.g. N = 256°)

30 |-
25 | _
20 |- , A
= W 5L -

10 .

I I I I I I
5 10 15 20 25 30

n
p
sum of forward and inverse transform;

IBM SP2 & CRAY T3E
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Wavelet Analysis of Turbulent Flow

General conclusion

progress In various aspects:

e polynomial wavelets for the interval
e analysis using divergence-free functions
e feasible computation for large data sets

however, still not ready to meet all
requirements in the most general case

analysis criteria: data from turbulence:
o orthogonality o divergence-free
o localization o 3-dimensional
o smoothness o non-homogeneous
o symmetry (bounded)

o fast algorithm
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