Wavelets & Turbulent Flow Some Aspects of Data Analysis

M. Uhlmann

Potsdam Institute for Climate Impact Research D-14412 Potsdam uhlmann@pik-potsdam.de

collaboration with

J. Fröhlich Institute for Hydromechanics, U. Karlsruhe

October 2001

Motivation & scope

turbulent flow is:

- multi-scale, bearing coherent structures
- inherently 3D
- described by vector quantities
- in general statistically inhomogeneous

wavelet bases:

allow to decompose a signal w.r.t. space
 & scale simultaneously

towards:

- wavelet bases suiting the demands of turbulence
- significant quantities derived from the raw coefficients
- feasible computation

Outline

- I Generalities of wavelet transform
- II Wavelets for the interval
- III Multi-dimensional approaches
- IV Vector-valued/divergence-free bases
 - V Implementation issues

What is a wavelet ?

admissibility: function with zero-mean localization: in physical & frequency space

e.g. Morlet wavelet $\psi(x) = e^{inx} \cdot e^{-x^2/2}$

- complex-valued
- barely admissible
- exponential decay

Continuous wavelet transform

scalar product

$$\tilde{f}(a,b) = \int_{x} \psi^* \left(\frac{x-b}{a}\right) f(x) \,\mathrm{d}x$$

• scale factor
$$a > 0$$

• translation $b \in \mathbb{R}$

wavelet windowed Fourier

Discrete wavelet transform

• <u>wavelet</u> translated & dilated dyadically

$$\psi_{ji}(x) = 2^{j/2} \psi \left(2^j x - i \right) \qquad j, i \in \mathbb{Z}$$

orthogonality:

$$\langle \psi_{ji}, \psi_{kl} \rangle \equiv \int_{x} \psi_{ji} \psi_{kl} \mathrm{d}x = \delta_{jk} \delta_{il}$$

• definition of a scaling function

$$\int_{x} \varphi(x) dx = 1, \quad \varphi_{ji} = 2^{j/2} \varphi \left(2^{j} x - i \right)$$

orthogonality to wavelets & own translates:

$$\langle \varphi_{ji}, \psi_{kl} \rangle = 0, \quad k > j \langle \varphi_{ji}, \varphi_{jl} \rangle = \delta_{il}$$

 \bullet various families ψ , φ exist

Multi-resolution analysis

• scaling fcts. generate nested subspaces:

$$V_j = \overline{\operatorname{span}} \{ \varphi_{ji} \}_{i \in \mathbb{Z}}$$
$$V_0 \subset V_1 \subset \dots V_j \subset V_{j+1} \subset \dots$$

• wavelet fcts. are complement spaces:

$$W_j = \overline{\operatorname{span}} \{ \psi_{ji} \}_{i \in \mathbb{Z}}$$

 $V_{j+1} = V_j \oplus W_j$

low-pass/band-pass filters:

Multi-resolution analysis (cont'd.)

particularly: $L^2(\mathbb{R}) = V_J \oplus \left(\bigoplus_{j \ge J} W_j \right)$

 \Rightarrow decomposition of a signal:

$$f(x) = \sum_{i \in \mathbb{Z}} \overbrace{\langle f, \varphi_{Ji} \rangle}^{c_{Ji}} \varphi_{Ji}$$
$$+ \sum_{j \geq J} \sum_{i \in \mathbb{Z}} \underbrace{\langle f, \psi_{Ji} \rangle}_{d_{ji}} \psi_{ji}$$

$$E \equiv \int f(x)^2 \, \mathrm{d}x = \sum_i c_{Ji}^2 + \sum_j \sum_i d_{ji}^2$$

 $\bullet~N$ to N transform

Mallat algorithm

• identify a low-pass filter related to φ , a band-pass filter from ψ :

$$\varphi, \psi \longrightarrow H, G$$

• algorithm: from small to large scales

• operation count $\mathcal{O}(N \log_2(N))$

Choice of basis functions $\varphi\text{, }\psi$

- <u>discrete-orthogonal</u> vs. continuous (orthogonality w.r.t. weight unity)
- <u>real-valued</u> vs. complex
- localization (space & scale)
- symmetry
- vanishing moments
- non-compact vs. compact

Bounded signal: problem

- Fourier techniques do not work
- artifacts at boundary:

- boundary region might be particularly interesting (e.g. wall-bounded flow)
- \Rightarrow need orthogonal basis on $[x_1, x_2]$
- \circ attempts with $\cos\mbox{-mapping}$ failed

Polynomial wavelets

Fourier

$$\psi_{ji}(x) = \sum_{k} a_{ji}(k) \mathbf{e}^{Ikx} \qquad x \in \mathbb{R}/\mathbb{Z}$$

Orthopoly

$$\psi_{ji}(x) = \sum_{k} a_{ji}(k) P_k(x) \quad x \in [-1, 1]$$

with $\int P_k P_l w(x) \, \mathrm{d}x = \delta_{kl}$

Fischer & Prestin (1997):

- use repro. kernel poly. $K_n = \sum_{k=0}^n P_k(x)P_n(y)$ $\varphi_{ni} = K_n(x, y_i^{(n+1)}), \ \psi_{ni} = K_{2n}(x, y_i^{(n)}) - K_n(x, y_i^{(n)})$
- setting $P_k = U_k$ (Chebyshev II) yields:

$$\langle \varphi_{ji}, \varphi_{jl} \rangle_w = \delta_{il}$$

$$\langle \psi_{ji}, \psi_{ml} \rangle_w = \delta_{il} \delta_{jm}$$

$$\langle \varphi_{ji}, \psi_{ml} \rangle_w = 0 \qquad (m \ge j)$$

• <u>however</u>: $w(x) = \sqrt{1 - x^2}$

Legendre wavelets

- $a_{ji}(k)$ to fulfill orthogonality of $\psi_{ji}(x)$
- choice of P_k determines the weight w(x)
- \rightarrow set instead $P_k = L_k$ (Legendre)

(Prestin, pers. comm. 2001) $\Rightarrow w(x) = 1$ as desired

$$\varphi_{ji}(x) = C_{ij}^{\varphi} \sum_{k=0}^{2^{j}} U_k(y_i^{(2^{j}+1)}) \cdot \sqrt{k+1/2} \cdot L_k(x)$$
$$i = 0 \dots 2^{j}$$

$$\psi_{ji}(x) = C_{ij}^{\psi} \sum_{k=2^{j+1}}^{2^{j+1}} U_k(y_i^{(2^j)}) \cdot \sqrt{k+1/2} \cdot L_k(x)$$
$$i = 0 \dots 2^j - 1$$

with zeroes $y_i^{(n)} = -\cos\left(\frac{(i+1)\pi}{n+1}\right)$

Legendre wavelets – shape

no strict translational invariance

Legendre wavelets – decay

• "energy" contained in tails is small

Legendre wavelets – MRA

• propose (non-classical) MRA, $L_2([-1,1])$

$$f(x_l) = c_{00}\varphi_{00}(x_l) + c_{01}\varphi_{01}(x_l) + \sum_{j=0}^{J} \sum_{i=0}^{2^j - 1} d_{ji}\psi_{ji}(x_l)$$

• numerical convergence of the approximation

• energy: $\int f(x)^2 dx = c_{00}^2 + c_{01}^2 + \sum_{j,i} d_{ji}^2$

0

-1

0

Х

16

+1

Artificial signal: sine

• reading of scale, even if non-periodic

Artificial signal: bump

• scale & localization of bump

• snapshot, $Re_{\tau} = 590$, streamwise velocity fluctuations, wall-to-wall

Local energy spectrum

• define power spectral density

$$E(k_j, x_c) \equiv \frac{d_{ji_c}^2}{\Delta k_j} \quad \text{(closest-to-} x_c \text{ index gives } i_c\text{)}$$

and wavenumber or "scalenumber"

$$k_j = \frac{1}{s_{ji_c}}$$

previous channel data:

Future tasks

- improve localization properties in physical space (presently: decay $\sim x^{-1}$)
- conceive a faster algorithm for the transform (presently: $\mathcal{O}(N^2)$)

Multi-D: General approaches

(A) genuinely multi-D basis

 $\psi_{i_x,i_y}^{j,\alpha}(\vec{x})$

tensor product of 1D bases

$$\psi_{i_x,i_y}^{j_x,j_y}(x,y) = \tilde{\psi}_{j_x,i_x}(x) \cdot \psi_{j_y,i_y}(y)$$

scales are "scrambled"

(C) tensor product of 1D MRA's

$$\psi_{i_x,i_y}^{j,1}(x,y) = \tilde{\varphi}_{j,i_x}(x) \cdot \psi_{j,i_y}(y)$$

$$\psi_{i_x,i_y}^{j,2}(x,y) = \tilde{\psi}_{j,i_x}(x) \cdot \varphi_{j,i_y}(y)$$

$$\psi_{i_x,i_y}^{j,3}(x,y) = \tilde{\psi}_{j,i_x}(x) \cdot \psi_{j,i_y}(y)$$

 \bullet scale index j controls refinement in both directions

2D example: hybrid MRA

- <u>x</u>: periodic spline wavelets (Perrier & Basdevant 1989)
- y: Legendre wavelets
- \bullet localization properties differ in $x,\ y$
- scale is function of position in y: $s_y(j, i_y)$

horizontal features

2D coefficient scheme (B)

• select scales separately (aspect ratio)

Vortex dipole rebound

$$Re = \frac{u_{\infty} R}{\nu} = 771$$

- simulation: 256 Fourier \times 300 B-splines
- spectral interpolation upon L-G-L grid
- analysis with 256 periodic spline wavelets \times 257 Legendre wavelets

Slice from plane channel flow

$$Re_{\tau} = \frac{h \, u_{\tau}}{\nu} = 590$$

streamwise velocity fluctuations

(mean flow)

(X)

- simulation: 600 Fourier \times 385 Chebyshev
- spectral interpolation upon L-G-L grid
- analysis with 512 periodic spline wavelets \times 513 Legendre wavelets

Channel: plain coefficient scheme

- interpretation not obvious
- need derived quantities

Slice from plane channel flow

Slice from plane channel flow

Local energy spectra

• define local 2d power spectral density

$$E(k_{j_x}, k_{j_y}, x, y) \equiv \frac{\left(d_{i_{xc}, i_{yc}}^{j_x, j_y}\right)^2}{\Delta k_{j_x} \Delta k_{j_y}} 2^{j_x + j_y}$$

Local energy spectra point A 10⁻⁵ k_{jx} E10⁻¹⁰ 10⁻¹⁵ point B 10⁻⁵ $k_{j\underline{x}}$ E10⁻¹⁰ 10⁻¹⁵ $\frac{10^{-2}}{k_{jy}^+}$ 10⁻³ 10⁻¹

33

Intermittency index

• define a measure of scale-wise relative energy

$$I(s_x, s_y, x, y) \equiv \frac{\sum_{\alpha=1}^{3} \left(d_{i_{x_c}, i_{y_c}}^{j_x, j_y}(u_\alpha) \right)^2}{\sum_{i_{x_c}, i_{y_c}} \sum_{\alpha=1}^{3} \left(d_{i_{x_c}, i_{y_c}}^{j_x, j_y}(u_\alpha) \right)^2 / n_y n_x}$$

$$s_x^+ = 58, \, s_y^+ \approx 75, \, max(I) = 19$$

Intermittency index

35

Statistics: characteristic wall-normal length scales

• define time-averaged 2d power spectral density, fct. of wall-distance

$$< E_{\alpha\beta}(j_x, j_y, y) > \equiv 2^{j_x} \sum_{i_x=0}^{2^{j_x}-1} \frac{< d_{i_x, i_y}^{j_x, j_y}(u_\alpha) d_{i_x, i_y}^{j_x, j_y}(u_\beta) >}{\Delta k_y \Delta k_x}$$

• define char. length of "energetic" scales

$$L_{y}^{\alpha\beta}(j_{x}, y) \equiv \frac{\int_{0}^{\infty} \langle E_{\alpha\beta}(j_{x}, j_{y}, y) \rangle k_{y}^{-1} dk_{y}}{\int_{0}^{\infty} \langle E_{\alpha\beta}(j_{x}, j_{y}, y) \rangle dk_{y}}$$

• define char. length of "dissipative" scales $\left(\ell_y^{\alpha\beta}(j_x,y)\right)^{-2} \equiv \frac{\int_0^\infty \langle E_{\alpha\beta}(j_x,j_y,y) \rangle k_y^2 \,\mathrm{d}k_y}{\int_0^\infty \langle E_{\alpha\beta}(j_x,j_y,y) \rangle \,\mathrm{d}k_y}$

• mild y-dependence; L_y^{11} , L_y^{22} similar

• stronger y-dependence; ℓ_y^{11} , ℓ_y^{22} similar

Recap: multi-d bases

- extension of discrete transform by tensor product of 1d functions
- analysis/visualization more intricate
- method (C): qualitative; directional index and aspect ratio interfere
- method (B): preferred; direction through sole aspect ratio
- diagnostic tools: 2d local spectra, intermittency index, integral scales, ...

Transform of vector quantities

<u>standard</u>: use scalar wavelets for each component $f_i(\mathbf{x})$ of vector field $\mathbf{f}(\mathbf{x})$

divergence-free data: (e.g. incompressible flow)

- filtered field *does not* remain div-free
- analysis of *mode-wise* non-linear transfer processes (e.g. energy, enstrophy) not possible
- \Rightarrow need genuinely <u>div-free</u> wavelets

Helical wavelets, Kishida (2000)

(i) helical decomposition of Fourier comp. $\hat{\mathbf{f}}(\mathbf{k}) = \hat{f}_{+}\mathbf{h}_{+}(\mathbf{k}) + \hat{f}_{-}\mathbf{h}_{-}(\mathbf{k})\left(+\hat{f}_{0}\mathbf{h}_{0}(\mathbf{k})\right)$ (ii) "helical pull-up" $\hat{\psi}_{\pm}(\mathbf{k}) = \hat{\psi}\mathbf{h}_{\pm}(\mathbf{k})$

 \Rightarrow union of pull-ups of wavelet basis

$$\mathbf{f}(\mathbf{x}) = \sum_{\lambda \in \Lambda} f_{\lambda} \boldsymbol{\psi}_{\lambda}(\mathbf{x}), \ f_{\lambda} = \int \mathbf{f}(\mathbf{x}) \cdot \boldsymbol{\psi}_{\lambda}(\mathbf{x}) d\mathbf{x}$$

• indices $\Lambda = \{j; i; 1 \le q \le 7; s \in \{+, -\}\}$

• <u>div-free</u> (mode-wise): $\nabla \cdot \psi_{\lambda}(\mathbf{x}) = 0$

simple algorithm:

- (i) FFT forward
- (ii) scalar product
- (iii) FFT backwards
- (iv) fast (scalar) WT

$$\begin{aligned} \mathbf{f}(\mathbf{x}) &\to \hat{\mathbf{f}}(\mathbf{k}) \\ \mathbf{h}_{s}^{*}(\mathbf{k}) \cdot \hat{\mathbf{f}}(\mathbf{k}) \\ \mathbf{h}_{s}^{*}(\mathbf{k}) \cdot \hat{\mathbf{f}}(\mathbf{k}) &\to f_{s}(\mathbf{x}) \\ f_{\lambda} = < f_{s}, \psi_{ji}^{q} > \end{aligned}$$

Helical wavelets & filtering

• triply-periodic physical space

<u>here</u>: used together with spline wavelets

- localization similar
- compression properties similar
- scale filtering:

scalar wavelets (divergence!)

helical wavelets

enstrophy of freely-decaying, homogeneous, isotropic turbulence, $Re_{\lambda} = 20$, $N = 64^3$. scale of filter: $s_j = 0.7\lambda$ (band-pass).

Helical wavelets & non-linear transfer

evolution of energy of individual mode "a"

$$\mathsf{d}_{t}e^{a} - \nu u^{a} \sum_{d} u^{d} \int \psi^{a} \cdot \nabla^{2} \psi^{d} \mathsf{d} \mathbf{x} = \\ - u^{a} \sum_{b} \sum_{c} u^{b} u^{c} \underbrace{\int \psi^{a} \cdot \left(\psi^{b} \cdot \nabla\right) \psi^{c} \mathsf{d} \mathbf{x}}_{M_{abc}}$$

• "balancing pair" (analog Fourier triad)

$$M_{abc} + M_{cba} = 0$$

transfer of energy between $a \leftrightarrow c$, but depending on b

in practice: size prohibitive for evaluation

 \longrightarrow need *a priori* reduction

Inter-scale energy transfer

<u>reduce over</u>: position, direction, helicity $\mathbf{u}^{(j)}(\mathbf{x}) = \sum_{q,i,s} u^{\lambda} \boldsymbol{\psi}^{\lambda}(\mathbf{x})$

non-linear term:

 $NL_j = -\sum_k \sum_l \int \mathbf{u}^{(j)} \cdot \left(\mathbf{u}^{(k)} \cdot \nabla \right) \mathbf{u}^{(l)} d\mathbf{x}$

forced, homogeneous, isotropic turbulence, $Re_{\lambda} = 150, N = 512^3.$

Work in progress – extensions

- analyze enstrophy budget: separate advection from vortex stretching
- use different reduction schemes:
 e.g. localized in space, conditioned upon certain "events"

Parallel version of Mallat's algorithm

- huge datasets from 3D simulations (512^3 modes)
- 2^m • multi-processor machines (suppose procs)
- "long" filters: work in Fourier space
 - ingredients: FFT
- - convolution
 - down-/upsample

 - additionally: transpose of data
 - vary number of active processors

Distribution of data/work (i) use classical "slice" data model 'z-cut' "y-cut" y_{1x}

(ii) at each step of Mallat algorithm,
 data-size is halved
 → need to de-activate processors

47

Performance

(i) memory

- nearly inv. proportional to no. procs n_p
- bias scales as $\Delta n = (n_p^2 1) \cdot 7/3$
- retrieval scheme for individual coefficients

(ii) execution

• solid speed-up (e.g. $N = 256^3$)

General conclusion

progress in various aspects:

- polynomial wavelets for the interval
- analysis using divergence-free functions
- feasible computation for large data sets

<u>however</u>, still not ready to meet all requirements in the most general case

analysis criteria:

- orthogonality
- localization
- smoothness
- symmetry
- fast algorithm

data from turbulence:

- divergence-free
- 3-dimensional
- non-homogeneous(bounded)