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1. Purpose

In the framework of the research project of Klein (1998), detailed time-dependent
information of the flow fields in two distinct geometric configurations (homogeneous,
isotropic flow; plane channel flow) is needed for the purpose of analyzing the behavior of
small-scale instabilities and their influence upon the turbulent energy cascade. Here we
describe our first steps towards generating those fields via direct numerical simulation
(DNS) in the former case of homogeneous isotropic flow.

2. The equations of motion

For incompressible, constant-density flow, the momentum equations in Cartesian co-
ordinates read:

∂t ui − ν∂jjui = Hi − ∂ip + fi , (2.1)

where ui are the components of velocity, ν the viscosity, Hi = (uiuj),j the non-linear
term, p the pressure (the density is assumed to be unity for convenience) and f a body
force included for the sake of generality. In Fourier space, the system can be written in
the following manner:

∂tûi + νk2ûi = Ĥl

(
δil −

kikl

k2

)

︸ ︷︷ ︸
N̂L

+ ûi h(k) . (2.2)

The body force was assumed to be linear in the variable ui and divergence-free, i.e.
f̂k = ûkh(k), where ki ûi = 0 (continuity). Note that pressure has been eliminated by
substituting the solution of its associated Poisson equation.

The three-dimensional energy spectrum is defined as the spectral energy density of
each wavenumber shell (note that k =

√
kiki is the modulus of the wavenumber vector):

E(k) =

3∑

i=1

ûi · û∗i , (2.3)

the asterisk denoting complex conjugation. The global turbulence intensity is therefore
measured by q2 =

∫
k E(k)dk (note also the definition of the r.m.s. one-component velocity

u′ =
√

2q2/3). The energy dissipation rate ε is customarily defined in connection with
the r.m.s. one-component vorticity ω′ as:

ε = ν ω′ 2 = 2 ν

∫
∞

0

k2 E(k)dk . (2.4)
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The integral length scale, the Taylor micro-scale and the Kolmogorov scale, used in the
following, are defined as:

Lint =
π

2 u′ 2

∫
∞

0

k−1 E(k)dk (2.5)

λ2 = 15 ν
u′ 2

ε
(2.6)

η =

(
ν3

ε

)(1/4)

. (2.7)

Correspondingly, the large-eddy turn-over time is defined by T = Lint/u′ and the Kol-
mogorov time as tkol =1/ω′; the Taylor micro-scale Reynolds number is Reλ = u′ λ/ν.

3. The initial field

At the moment the initial field of our simulation is prescribed in a way similar to the
one proposed by Rogallo (1981). We assume an initial three-dimensional energy spectrum
E(k, t=0) of the following form:

E(k, t=0) =
3
2u′

A

kσ

kσ+1
p

exp(−σ
k

kp
) , (3.1)

where A=
∫
∞

0
kσ exp(−σk)dk. kp sets the “peak-wavenumber” modulus of the prescribed

spectrum (the subscript of kp should not be confused with a “directional” subscript of the
wavenumber vector ki) essentially used for controlling the relationship between Reynolds
number and (numerical) Fourier-space sample size while σ is the exponent of the power-
law decay (Mansour & Wray (1994)).

The velocity field is assigned with randomly scrambled phases and verifying the con-
tinuity constraint, such that its Fourier coefficients read:

ûi(k) = α e1
i + β e2

i , (3.2)

with e1
i , e2

i mutually orthogonal unit vectors in the plane orthogonal to the wave vector
k. The complex factors α, β are given by:

α =

√
E(k, t=0)

4πk2
exp(i θ1) cos(φ) ,

β =

√
E(k, t=0)

4πk2
exp(i θ2) sin(φ) , (3.3)

with θ1, θ2, φ uniformly distributed pseudo-random numbers on the interval (0, 2π) and
i2 =−1.

4. The synthetic energy input

Sometimes it is desirable to counteract natural dissipation in order to prevent a rapid
decay of the turbulent motion. For this purpose, energy can be injected continuously into
the system by defining an appropriate body force coefficient h(k) in wavenumber space.
Energy is in general “pumped” into the large scales at a magnitude equal to the initial
global energy dissipation such as to allow for a controlled equilibrium flow. Squaring (2.2)
and integrating over all wavenumbers, we obtain the equation for the temporal evolution
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case N σ kp ν forcing kmaxη Reλ Lint/Lbox

256 a 256 4 13 0.0007 –
256 b 256 4 5 0.0033

√
2 50 0.08

256 c 256 4 5 0.0016
√ √

2 70 0.08

Table 1. Parameters of the present simulations: line style, number of Fourier modes N , initial
spectral decay coefficient σ, peak wavenumber kp , viscosity ν; small-scale resolution kmaxη,
Taylor Reynolds number Reλ and integral scale with respect to the computational box Lint/Lbox.
The last three values are taken at the “equilibrium” state and are therefore not available in the
freely-decaying case 256 a.

of the turbulence intensity:

∂t q2 = −ε + q2 3

∫

k

h(k)dk . (4.1)

By normalizing the forcing function h(k) in the following way

h(k) =
a(k)

3 q2
∫

k
a(k)dk

Pinput , (4.2)

we obtain a simple balance for turbulence intensity: ∂tq
2 = Pinput − ε. It is seen that

Pinput is the power input into the system; a(k) is a normalized forcing spectrum.
As in all cases, the particular form of the forcing is a matter of choice. In the code of

A. Wray, the power input is distributed over a narrow band of wavenumbers around the
peak of the initially selected spectrum, viz:

a(k) =

{
1 if kp−1 ≤ k ≤ kp+1
0 otherwise

. (4.3)

The condition Pinput =ε(t=0) is imposed. Independently, a numerical “target” resolution
kmax η is reached during the steady state by assigning the corresponding viscosity ν which
is obtained from substitution of (2.4) and (2.7) and integrating (3.1) accordingly. The
numerical limiting wavenumber as defined in the code is kmax =

√
2/3 N where N is the

number of modes in the Fourier expansion exp(±ikjxj)=0, . . . 1
2N . Note that the largest

numerical wavenumber modulus should actually rather be
√

3N/2.

5. The chosen parameter set

The parameters of our present simulations are shown in table 1; the cases can be
further subdivided into freely-decaying and forced simulations.

5.1. Freely-decaying case

In the decaying case (run 256 a) the initial Taylor micro-scale Reynolds number is Reλ =
180 with an evolution as shown in figure 1. The resolution is initially marginal while the
box is large compared to the integral length scale (cf. figures 3 and 2). The simulation
has been run for approximately 420 Kolmogorov time units of the initial field, Tkol 0,
which corresponds to 6.4 initial large-eddy turnover times. This simulation took 6h of
wall-clock time on 128 processors of the T3E machine at ZIB, Berlin.

The energy decay is shown in figure 4, following a power-law with a coefficient of
roughly −1.4 at later times. The build-up of a realistic values for the velocity derivative



4 M. Uhlmann

skewness can be deduced from figure 6. The evolution of the energy spectrum from its
initially unrealistic shape can be observed in figure 7.

The state of the flow-field at the end of the present simulation with respect to the pres-
ence of coherent structures was briefly investigated by flow visualization. Figure 10 shows
an isocontour plot of vorticity magnitude |ω| in a sub-volume of the computational box at
an instant that corresponds to Reλ =35. At a threshold of |ω| ≥ 3ω′ one can distinguish
structures which are reminiscent of the characteristic ‘worms’ (cf. e.g. Jiménez & Wray
(1998)). It is also clear that a higher resolution should be envisaged for the study of such
small-scale phenomena (note that kmaxη ≈ 1 at that time). Jiménez & Wray (1998) use
kmaxη = 1 during most of the simulations and then increase the resolution to kmakη ≥ 2
shortly before output of the data fields.

5.2. Forced cases

Two simulations with large-scale forcing were conducted: a low-Reynolds number case
and one at medium Reynolds-number (named 256 b and 256 c respectively); the settling
towards the respective “asymptotic” values of Reλ can be observed in figure 1. The small-
scale resolution is excellent in both cases (figure 2 and flow visualizations below) while
the large-scale sample remains also very large (figure 3). Figure 5 demonstrates that the
turbulent kinetic energy tends towards a constant value at the end of both runs after
initially starting off with a zero slope (due to the use of Pinput =ε(0)) and then decaying
(due to en increase in ε itself). The velocity derivative skewness takes on values similar
to the freely-decaying case (figure 6).

The spectra shown in figures 8 and 9 are rather rapidly converging towards a seemingly
stationary shape, over a time of t/tkol 0 ∼ O(10).

Finally, the visualization of high-vorticity structures (figures 11 and 12) underlines
again the quality of the resolution.

6. Further procedure

We will conduct a forced run over sufficiently large time to obtain converged low-order
statistics which can be compared to those published in the literature. Having confidence
in the parameter range, we will then proceed to produce three types of time-series of
instantaneous fields: (i) while further forcing the flow; (ii) just after switching off the
energy input; (iii) at a somewhat later stage of the free decay (‘somewhat’ needs to be
further specified).

We will perform these simulations at resolutions of 256 and 512 spectral modes (1024
should also be possible technically), also carrying out some reduced tests of grid refine-
ment.

The small-scale resolution will be kept similar to the one used in cases 256 b and
256 c. The peak of the energy spectrum can be safely moved further towards the small
wavenumbers so that a higher Reynolds number should also be possible. We target for
Reλ≈140 when using 512 modes.
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Figure 1. Evolution of the Taylor microscale Reynolds number during the course of the
present simulations. Line types are as in table 1.
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Figure 2. Evolution of the small-scale resolution parameter.
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Klein, R. 1998 Kleinskalige Instabilitäten als Bausteine der turbulenten Energiekaskade. DFG-
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Figure 3. Evolution of the relative box size
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Figure 4. Temporal decay of the turbulent kinetic energy of the flow in case 256 a. The
straight reference line has a negative slope of 1.4.
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Figure 5. Temporal evolution of the turbulent kinetic energy of the flow in the two forced
cases 256 b and 256 c.
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Figure 6. Evolution of the velocity derivative skewness.
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Figure 7. Evolution of energy spectrum at various stages of the simulation 256 a.
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Figure 8. Evolution of energy spectrum at various stages of the simulation 256 b.
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Figure 9. Evolution of energy spectrum at various stages of the simulation 256 c.
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Figure 10. Isocontours of vorticity magnitude |ω| at a level of three times the current r.m.s.
value, taken at t/tkol 0 = 31 when Rλ = 35. The linear dimension of the selected sub-volume
measures roughly 200η.
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Figure 11. Isocontours of vorticity magnitude |ω| = 3 ω′, taken at the end of case 256 b

(Rλ ≈ 50). The linear dimension of the selected sub-volume measures roughly 110η.
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Figure 12. Isocontours of vorticity magnitude |ω| = 3 ω′, taken at the end of case 256 c

(Rλ ≈ 70). The linear dimension of the selected sub-volume measures roughly 110η.
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