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Abstract

In the present report, we attempt to estimate whether the computational overhead due
to the explicit removal of Chebyshev-pseudo-spectral-induced aliasing errors is necessary
in a DNS of plane channel flow. We first recall the origin of aliasing errors in a Cheby-
shev method before turning to results from different test cases: analytical; transition to
turbulence; fully-developed turbulence.

Our results indicate that corrective action can slightly improve the quality of the
solution in situations where the resolution is marginal. We do not find conclusive evidence
that supports the use of the de-aliasing strategy under non-marginal conditions.



2 M. Uhlmann

1. Introduction

In the past, various authors have investigated the importance of aliasing errors in
Fourier-based pseudo-spectral methods for direct numerical simulation (DNS) of turbu-
lent flows (cf. Canuto, Hussaini, Quarteroni & Zang (1988) for a survey). The explicit
removal of such errors has become common practice in numerical turbulence studies since
the recognition of the 2/3-rule by Orszag (1971) and the introduction of the relatively
low-cost combination of phase-shifts and truncation by Rogallo (1981). However, the
importance of aliasing errors when using Chebyshev polynomial expansions instead of
Fourier series has – to my knowledge – not been addressed in detail in the literature.
While Canuto et al. (1988) briefly describe the existence and possible removal of aliasing
errors in Chebyshev pseudo-spectral methods, actual simulations of the Navier-Stokes
equations have apparently been commonly performed without resorting to such correc-
tions (e.g. Kim et al. (1987), Krist & Zang (1987), Hill & Ball (1999)).

In the present report, we attempt to estimate whether the computational overhead
due to the explicit removal of Chebyshev-induced aliasing errors is necessary (i.e. paying
off in terms of efficiency) in a DNS of plane channel flow. We first recall the origin of
aliasing errors in a Chebyshev method before turning to results from different test cases:
analytical; transition to turbulence; fully-developed turbulence.

Our present results indicate that corrective action can slightly improve the quality
of the solution in situations where the resolution is marginal. We do not find conclusive
evidence that supports the use of the de-aliasing strategy under non-marginal conditions.

2. Aliasing errors

In a discrete representation of continuous data the frequency content beyond the critical
(Nyquist) frequency is in general misinterpreted. One speaks of ‘aliasing’ when super-
critical frequencies are erroneously attributed to lower frequencies within the resolved
range. In a numerical approximation of partial differential equations, such high frequency
content of the solution is being generated by non-linear terms. In the case of the Navier-
Stokes equations, these (convective) terms are of quadratic order. Let us consider a
Chebyshev pseudo-spectral method (i.e. one where the product is evaluated in physical
space and fast transforms are used to shuttle to and from spectral space) for computing
a product between two functions u, v. The Nth order truncated Chebyshev expansion
reads:

Uj =
N∑
m=0

ûm Tm(xj)

Vj =
N∑
n=0

v̂n Tn(xj)

0 ≤ j ≤ N , (2.1)

where for the Gauss-Lobatto grid:

xj = cos(πj/N) , Tm(xj) = cos(mπj/N) . (2.2)

The Chebyshev coefficients of the non-linear term Zj = Uj · Vj read

ẑk =
1

γk

N∑
j=0

Zj Tk(xj)wj , (2.3)
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with the following weights and normalization factors

wj =

{
π/2N j = 0, N
π/N 1 ≤ j ≤ N − 1

γk =

{
π k = 0, N
π/2 1 ≤ k ≤ N − 1

(2.4)

Substituting (2.1) into (2.3) leads to:

ẑk =
1

γk

N∑
j=0

N∑
m=0

N∑
n=0

ûm Tm(xj) v̂n Tn(xj)Tk(xj)wj

=
1

4γk

N∑
j=0

wj

N∑
m=0

N∑
n=0

ûm v̂n {cos(aj(m− n+ k)) + cos(aj(m− n− k))

+ cos(aj(m+ n+ k)) + cos(aj(m+ n− k))} , (2.5)

where aj = πj/N . The discrete orthogonality relation for Chebyshev polynomials reads:

1

N + 1

N∑
j=0

Tp(xj) =
1

N + 1

N∑
j=0

cos(pπj/N) =

{
1 if p = 2Nm m = 0,±1, . . .
0 else

(2.6)
Therefore (2.5) becomes

ẑk =
π

4γk

{[ ∑
m−n+k=0

ûm v̂n +
∑

m−n−k=0

ûm v̂n +
∑

m+n−k=0

ûm v̂n +
∑

m+n+k=0

ûm v̂n

]

+

 ∑
m−n+k=2Np

ûm v̂n +
∑

m−n−k=2Np

ûm v̂n +
∑

m+n−k=2Np

ûm v̂n +
∑

m+n+k=2Np

ûm v̂n


(2.7)

(where p = 0,±1, . . .). The terms in the second pair of square brackets are aliasing errors.
In order to have an Nth order representation that is free of such aliasing errors, a total
number of M > N modes can be chosen for the basic expansion, setting high wavenumber
coefficients to zero. What is the minimum number M which fulfills that requirement?
Considering the very last sum which under these conditions passes over all indices for
which m+n+k = 2M , the worst case is when m = n = N (beyond which all ûm, v̂n are
zero). We want the first alias-affected wavenumber to lie just outside the ‘useful’ range,
therefore k = N + 1, which in turn leads to the following condition:

M ≥
3(N + 1)

2
− 1 . (2.8)

It is obvious that de-aliasing can be achieved as in Fourier pseudo-spectral methods by
the 3/2-rule (cf. also (Canuto et al. 1988, p.86)), i.e. M = 3(N + 1)/2 − 1 collocation
points are chosen in physical space while only N Chebyshev modes are retained for
computation in spectral space and the remaining coefficients are removed/padded with
zeroes during the transformation steps.

After having computed the product in physical space, further operations are performed
using the spectral coefficients, e.g. the computation of a derivative z,x = (u v),x. The
Chebyshev derivative involves the following operations:

Z ′(xj) =
N∑
m=0

ẑ(1)
m Tm(xj) , (2.9)
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where the derivative coefficients in Chebyshev space read (Canuto et al. (1988)):

ẑ(1)
m =

2

cm

N∑
p = m+ 1
p+m odd

p ẑp , cm =

{
2 if m = 0
1 else

. (2.10)

The last formula shows that derivatives are given by a recurrence relation in decreasing
order, which implies that truncation and differentiation do not commute (Canuto et al.
1988, p.68). Therefore, when using the 3/2-rule for de-aliasing, truncation should be
performed immediately after passing data to spectral space in order to prevent the alias-
affected coefficents with N + 1 ≤ k ≤ M from affecting the ‘useful range’ 0 ≤ k ≤ N .
Alternatively, a total number of M̃ = 2N modes could be used (‘4/2-rule’, cf. Orszag

(1971)) in order to obtain a full alias-free length M̃ and then truncating only at the end
of each step, just before re-transforming to physical space. For reasons of computational
overhead, we will only consider the 3/2-rule in the following.

3. Analytical test

We consider the Chebyshev pseudo-spectral computation of the function

f(x) = (u2),x , u(x) = sin(10 · 22/19π x) , 0 ≤ x ≤ 2 . (3.1)

Convergence is measured by the square norm of the error normalized with the r.m.s.
value of f(x) for different numbers of modes N in the ‘useful range’, i.e. N = M for the
aliased scheme and N = (M + 1)2/3− 1 for the de-aliased scheme. The corresponding
diagram is shown in figure 1 (a), where both methods are seen to lead to similar errors.
In fact, the above measure of the error contains two contributions:

(i) the aliasing (or ‘interpolation’) error due to the projection of the basic function
u(x) upon the truncated Chebyshev series:

ûk = ũk +
∑

j=2mN±k

j>N

ũj

︸ ︷︷ ︸
interpolation error

, (3.2)

(where ũk is a mode of the continuous Chebyshev transform, cf. (Canuto et al. 1988,
p.68));

(ii) the aliasing error due to the pseudo-spectral computation of the non-linear term
u2(x) as in equation (2.7), i.e. the error associated with the discrete representation of
the high-frequency content generated by squaring the signal.
An alternative measure of the error can be defined which singles out the second con-
tribution (ii) only: the error of the numerical solution F with respect to the frequency
content of the exact solution lying within the respective ‘useful range’, i.e.:

error =

√√√√ 1

N + 1

N∑
i=0

(F (xi)− fN (xi))2 , (3.3)

where the N -mode low-pass filtered function is given by:

fN(xj) =
N∑
k=0

ˆ̂
fk Tk(xj) ,

ˆ̂
fk =

1

γk

K∑
j=0

f(xj)Tk(xj)wj , (3.4)
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and K is a large finite number of modes in practice (here: K = 512). Figure 1 (b)
shows the convergence measured according to (3.3); the effect of de-aliasing is visible: as
expected, the limited range of wavenumbers N is better represented than with aliasing
errors for intermediate wavenumbers. However, since in an actual simulation both errors
(i) and (ii) are simulataneously present, the effect of the de-aliasing procedure gets blurred
as we will observe in the following more realistic test cases.

4. Transition

In this section we present results from the simulation of the early stages of transition to
turbulence in plane channel flow. The numerical scheme is based upon the method of Kim,
Moin & Moser (1987), i.e. truncated Fourier series in the spanwise (z) and streamwise
(x) coordinate direction and a Chebyshev polynomial representation in the wall-normal
(y) direction is used. Non-linear terms are evaluated pseudo-spectrally, performing de-
aliasing according to the 3/2-rule consistently in the (x, z) Fourier plane. It is our present
purpose to evaluate the need for de-aliasing in the remaining direction under realistic
circumstances and we will therefore present results that have been obtained with and
without de-aliasing of the Chebyshev modes according to the method outlined in §1.
For completeness, let us mention that the time integration is semi-implicit based upon a
three-step Runge-Kutta method and an implicit solution of the viscous problem. In what
follows, the time step was determined according to the linear CFL stability criterion of
the method; therefore, the temporal discretization error is not minimized and generally
interferes with the spatial error.

The present test case is similar to one of the cases considered by Krist & Zang (1987)
(cf. also Zang, Krist & Hussaini (1989)) in their resolution study. We consider the sec-
ondary instability of Poiseuille flow at Re=U0h/ν = 8000 which is linearly unstable to
two-dimensional normal mode perturbations in a narrow band of streamwise wavenum-
bers around αh = 1. The linear eigenfunction has been computed by a numerical eigen-
system analysis of the Orr-Sommerfeld equations using 400 sixth order B-splines. The
initial field has been assigned to our two evolution variables ϕ=∇2 v and ωy=u,z −w,x
in the following manner:

ϕ(x, y, z, t0) = A2D ϕ2D(x, y) +A3D e
Iφ(x,z)2π

ωy(x, y, z, t0) = 0 , (4.1)

where A2D = 0.01 is the amplitude of the linear 2D perturbation given by ϕ2D and
A3D = 2 × 10−4 is the amplitude of supplementary 3D background noise whose phase
angle is determined by the random variable 0 ≤ φ(x, z) ≤ 1. Since the (kx = 0, kz = 0)-
mode is resolved separately, the Poiseuille base flow is directly assigned to the respective
“primitive” variable

u00(y, t0) = U0 · y (2− y) , 0 ≤ y ≤ 2 . (4.2)

Note that the (random) initial field was generated only once at the lowest wall-normal
resolution and then adapted for subsequent runs at higher resolution by filling up the
high wavenumbers with zeroes. Throughout this section, 96× 32 Fourier modes (before
de-aliasing) were utilized while the box size measured Lx/h = 2π and Lz/h = 0.833.
The number of Chebyshev modes in the ‘useful range’ was varied from Ny = 33 up to
Ny = 97 (My = 145).

Figure 2 shows the spectrum of Chebyshev coefficients of the initial 2D perturbation
which is essentially captured by the first 30-40 modes. As a basic test, we have computed
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method =(c)

‘exact’ 2.66441E−3
Ny=33 aliased 2.63282E−3
Ny=49 aliased 2.63259E−3
Ny=97 de-aliased 2.63259E−3

Table 1. Effect of vertical resolution on the growth rate of the least stable two-dimensional
perturbation at Re = 8000. The ‘exact’ result has been obtained by numerical solution of the
Orr-Sommerfeldt equation using 400 B-splines of order 6 (cf. also Krist & Zang (1987)).

the growth rate of the linear perturbation by means of the full non-linear code†. Table 1
shows the results for different wall-normal resolutions. When using 33 aliased Chebyshev
modes, the temporal growth rate of the energy of the fundamental streamwise harmonic
is predicted within 10−4 accuracy relative to the numerical result at Ny=97 (de-aliased).
Note that the ‘exact’ linear result differs by about 1% which we attribute to the temporal
integration error.

Figure 3 again shows the evolution of the kinetic energy of that same harmonic, but
starting from the finite amplitude perturbation given by (4.1). Note that under these
circumstances rapid transition sets in at t ≈ 60h/U0, shortly beyond the time inter-
val presently under consideration. The various curves of the figure – corresponding to
different Chebyshev grids, aliased and de-aliased – can barely be distinguished.

Isocontours of the spanwise vorticity in the (x, y)-plane are plotted in figures 4-8 at
t = 20h/U0 and t = 55h/U0. At both stages of the evolution, small differences between
the Ny = 33 and the more highly resolved fields (Ny = 49, Ny = 97) can be discerned.
The deviations are slightly more pronounced when no de-aliasing is performed. However,
at no stage important oscillations are observed as is the case when the Fourier directions
are under-resolved or marginally resolved and aliased (cf. Krist & Zang (1987)).

5. Fully developed turbulence

We consider the evolution of the flowfield in the plane channel configuration of §4 but
in the regime of fully developed turbulent motion at a Reynolds number of Re = 3250.
The box size is chosen as Lx = 8.49h and Lz = 3.31h; the resolution is 192×128 modes in
the Fourier directions (before de-aliasing) and Ny = 97 Chebyshev modes in the ‘useful
range’. The initial field is taken from a simulation without de-aliasing in the wall-normal
direction and was spectrally up-sampled for continuation with de-aliasing.

Figure 9 shows the temporal evolution of the plane-averaged friction factor cf . It can
be observed that the aliased and de-aliased results start to differ noticeably after an
elapsed time of about 15h/U0 which corresponds to 150 viscous time units (t+ = tu2

τ/ν
where uτ is the friction velocity).

The wall-normal spectra of component energy and enstrophy,

Eαα(ky) =

∫ ∫
ûα(kx, ky, kz) û

∗
α(kx, ky, kz)dkxdkz (5.1)

Wαα(ky) =

∫ ∫
ω̂α(kx, ky, kz) ω̂

∗
α(kx, ky, kz)dkxdkz , (5.2)

where ~ω = ∇×~u is the vorticity (no implied summation for greek indices; asterisk denotes

† For this test only, the initial amplitudes were set to: A2D=10−5 and A3D=0.
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complex conjugation) is shown in figure 10 after an elapsed time of 2h/U0. The slight
‘pile-up’ of energy in high-wavenumber coefficients that occurs in the aliased simulation
is absent when de-aliasing is employed. Figures 11 and 12 show isocontours of spanwise
and streamwise vorticity in (x, y)- and (z, y)-planes respectively. No differences between
results from the two schemes are visible at this stage of the simulation.

At the later stage (t = 40h/U0), the spectral distribution of energy and enstrophy
shows a very similar character as earlier on (figure 13). By now, however, the aliased and
de-aliased flowfields have taken a slightly different shape from one another, as can be
deduced from the contourplots in figures 14 and 15 and had been indicated by the slow
divergence of the skin friction mentioned above. On the other hand, this is no surprise
considering the disordered character of the turbulent motion which allows for a divergence
of only slightly perturbed states.

6. Conclusion

Our present computations seem to lead to a conclusion that is similar to the one reached
in (Krist & Zang 1987, p.5) with respect to de-aliasing in Fourier spectral methods:

“Both aliased and de-aliased calculations are valid until they lose resolution; the
aliased calculation loses resolution slightly sooner than a de-aliased calculation with
an equal number of active modes.”

It is therefore not established that the additional effort stemming from the one-third
increase in collocation points according to the 3/2-rule pays off in a realistic, well-resolved
simulation.
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Figure 1. Square norm of the pointwise error of the Chebyshev pseudo-spectral calculation of
the non-linear term (u2),x for u(x) = sin(10 · 22/19π x) (0 ≤ x ≤ 2). (a) Error with respect to
the full analytical solution. (b) Error relative to the exact solution low-pass filtered with the
number of Chebyshev modes Ny as threshold, i.e. the part of the solution that contains only
contributions from the ‘useful range’ of the spectrum. +, aliased Chebyshev modes; ◦, de-aliased
according to the 3/2-rule.
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Figure 2. Decay of the Chebyshev coefficients of the least stable two-dimensional eigenfunction
of the streamfunction ψy(y) (where ψ(x, y, t0) = ψy(y) eiα(x−ct0)) obtained by linear stability
analysis at Re = 8000: +, real part; ◦, imaginary part.
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Figure 3. Temporal growth of the kinetic energy of the mode with (kx= 1, kz = 0) during the
non-linear evolution from finite initial value at Re = 8000: , Ny = 97 de-aliased; ,
Ny = 33 aliased; , Ny = 33 de-aliased.
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Figure 4. Isocontours of spanwise vorticity at values (−3.5 : .15 : −.5) at t = 20 h/U0 when
initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using 96× 33× 32
modes: (a) aliased Chebyshev modes, (b) de-aliased according to the 3/2-rule.
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Figure 5. Isocontours of spanwise vorticity at values (−3.5 : .15 : −.5) at t = 20 h/U0 when
initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using 96× 49× 32
modes: (a) aliased Chebyshev modes, (b) de-aliased according to the 3/2-rule.
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Figure 6. Isocontours of spanwise vorticity at values (−3.5 : .15 : −.5) at t = 20 h/U0 when
initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using 96× 97× 32
modes: de-aliased according to the 3/2-rule.
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Figure 7. Isocontours of spanwise vorticity at values (−3.5 : .15 : −.5) at t = 55 h/U0 when
initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using 96× 33× 32
modes: (a) aliased Chebyshev modes, (b) de-aliased according to the 3/2-rule.
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Figure 8. Isocontours of spanwise vorticity at values (−3.5 : .15 : −.5) at t = 55 h/U0 when
initialising with the most unstable 2d linear eigenfunction at Re = 8000 and using 96× 97× 32
modes: de-aliased according to the 3/2-rule.
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Figure 9. Evolution of the plane-averaged wall-friction of both walls during the fully turbulent
simulation at Re = 3250 having a resolution of 192×97×128 modes. , de-aliased according
to the 3/2-rule; , aliased Chebyshev modes.
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Figure 10. Wall-normal spectra of the Chebyshev coefficients of (a) the component energy and
(b) the component enstrophy of a fully turbulent simulation at Re = 3250 and a resolution of
192× 97× 128 modes; t U0/h = 17. +, aliased Chebyshev modes; ◦, de-aliased according to the
3/2-rule.
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Figure 11. Isocontours of spanwise vorticity at values (−16 : 2.5 : 1.5) at t = 17 h/U0 of a
fully turbulent simulation at Re = 3250 and using 192× 97× 128 modes: (a) aliased Chebyshev
modes, (b) de-aliased according to the 3/2-rule.
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Figure 12. Isocontours of streamwise vorticity at values (−15 : 1.5 : 5) at t = 17h/U0 of a
fully turbulent simulation at Re = 3250 and using 192× 97× 128 modes: (a) aliased Chebyshev
modes, (b) de-aliased according to the 3/2-rule.



18 M. Uhlmann

(a)
lo

g
(E

α
α

)

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

t=40

(b)

lo
g
(W

α
α

)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70 80 90 100

t=40

ky

Figure 13. Wall-normal spectra of the Chebyshev coefficients of (a) the component energy and
(b) the component enstrophy of a fully turbulent simulation at Re = 3250 and a resolution of
192× 97× 128 modes; t U0/h = 40. +, aliased Chebyshev modes; ◦, de-aliased according to the
3/2-rule.
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Figure 14. Isocontours of spanwise vorticity at values (−16 : 2.5 : 1.5) at t = 40 h/U0 of a
fully turbulent simulation at Re = 3250 and using 192× 97× 128 modes: (a) aliased Chebyshev
modes, (b) de-aliased according to the 3/2-rule.
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Figure 15. Isocontours of streamwise vorticity at values (−15 : 1.5 : 5) at t = 40h/U0 of a
fully turbulent simulation at Re = 3250 and using 192× 97× 128 modes: (a) aliased Chebyshev
modes, (b) de-aliased according to the 3/2-rule.


