FORSCHUNGSZENTRUM JULICH GmbH
Jiilich Supercomputing Centre
D-52425 Jiilich, Tel. (02461) 61-6402

Technical Report

Jiilich Blue Gene/P
Extreme Scaling Workshop 2010

Bernd Mohr, Wolfgang Frings (Eds.)

FZJ-JSC-1B-2010-03

May 2010
(last change: 17-May-2010)

Jitlich Blue Gene/P Extreme Scaling Workshop
2010

Bernd Mohr and Wolfgang Frings
Jiilich Supercomputing Centre

Executive Summary

From 22 to 24 March, JSC organized the 2010 edition of its Blue Gene Scaling
Workshop. Like the last workshop in October 2009[1], the main focus were
application codes able to scale-up during the workshop to the full Blue Gene/P
system JUGENE which consists of 72 racks with a total of 294,912 cores — still
the highest number of cores worldwide available in a single system.

Interested application teams had to submit short proposals which were evalu-
ated with respect to the required extreme scaling, application-related constraints
which had to be fulfilled by the JUGENE software infrastructure and the scien-
tific impact that the codes could produce. Ten high-quality applications were
selected!:

e Towards Direct Numerical Simulation of a Billion Fully Resolved Rigid
Bodies Immersed in a Fluid
J. Gotz, K. Iglberger, M. Stiirmer, U. Riide
University of Erlangen-Nuremberg, Germany

e Simulation of Fluid Flow and Mass Transport at Extreme Scale
S. Khirevich, A. Daneyko, U. Tallarek
Department of Chemistry, Philipps University of Marburg, Germany

e Highly Resolved Simulations of Turbulent Flows in Complex Geometries
with the YALES2 Solver
V. Moureau, P. Domingo, L. Vervisch
CORIA, Université et INSA de Rouen, France

e Scalability of the Nek5000 Spectral Element Code
S. Kerkemeier, S. Parker, P. Fischer
ETH Zurich, Switzerland and Argonne National Laboratory, USA

IParticipants to the workshop marked in bold

e Full Scale Simulation of Coronary Arteries in Presence of Red Blood Cells
A. Peters, S. Melchionna, E. Kaxiras, J. Latt, M. Bernaschi, M. Bisson,
S. Succi
Harvard University, USA and EFPL, Switzerland, and
Consiglio Nazionale delle Ricerche, Italy

e Scaling Parallel Fast Fourier Transform on BlueGene/P
M. Pippig, D. Potts
Chemnitz University of Technology, Germany

e Extreme Scaling of the BQCD Benchmark
H. Stiiben, M. Allalen
ZIB Berlin and LRZ Munich, Germany

e MP2C — A Parallel Mesoscopic Particle Dynamics Program
G. Sutmann
Jiilich Supercomputing Centre, Germany

e Hydrodynamic Turbulence Induced by Sedimenting Particles
M. Uhlmann
Karlsruhe Institute of Technology, Germany

e KKRnano: A Program for Large-Scale Density-Functional Calculations
R. Zeller, A. Thiess
TAS-3 and IFF-1, Forschungszentrum Jiilich, Germany

During the workshop, the teams were supported by JSC parallel application
experts, the JUGENE system administrators and one IBM MPI expert; how-
ever, the participants shared a lot of expertise and knowledge, too. More than
half of the teams succeeded to submit one or more successful full 72 rack jobs
during the course of the workshop, and three more, where algorithmic or load
balancing issues required the codes to run on a power-of-two number of cores,
scaled their applications to 64 racks (262,144 cores). One team ”only” achieved
to run on 32 racks (131,072 cores) due to a program bug which could not be re-
solved during the short time of the workshop. A total of 392 jobs were launched
using 138.72 rack days of the total 164 rack days reserved for the workshop.
This is an 84% utilization which could only be reached because of the extreme
good stability of the system and the proactive maintenance of JSC and IBM
staff.

Achieved Results

Godehard Sutmann from the Jiilich Supercomputing Centre, already a partici-
pant of the last workshop[1], executed a few experiments on the full machine to
get beyond the results achieved last time where due to using a distribution of 2™
domains "only” 262,144 cores could be used. Also, various processor mappings
were tested to improve a communication bottleneck.

The following chapters give an account on more detailed execution and scal-
ing results achieved by the other application codes during the workshop provided
by the participants themselves.

Acknowledgements

We would like to thank IBM Germany for their support of the workshop.

References

[1] Bernd Mohr, Wolfgang Frings, Jiilich Blue Gene/P Extreme Scaling Work-
shop 2009, Technical Report FZJ-JSC-IB-2010-02, Forschungszentrum
Jiilich, February 2010.
http://wuw.fz-juelich.de/jsc/docs/autoren2010/mohri/

Towards Direct Numerical Simulation of a Billion
Fully Resolved Rigid Bodies Immersed in a Fluid

Jan Gotz, Klaus Iglberger, Markus Stiirmer, Ulrich Riide
Chair for System Simulation, University Erlangen-Nuremberg

Abstract

This report describes computational models for particle-laden flows
based on a fully resolved fluid structure interaction. The flow simulation
uses the Lattice Boltzmann method, while the particles are handled by a
rigid body dynamics algorithm. The particles can have individual non-
spherical shapes, creating the need for a non-trivial collision detection and
special contact models. An explicit coupling algorithm transfers momenta
from the fluid to the particles in each time step, while the particles impose
moving boundaries for the flow solver. All algorithms and their interac-
tion are fully parallelized. Scaling experiments and a careful performance
analysis are presented for up to 294912 processor cores of the Jugene.
The largest simulations involve 264 million particles that are coupled to a
fluid which is simultaneously resolved by 150 billion cells for the Lattice
Boltzmann method.

Introduction

Simulations of particulate flows are crucial for the modeling of many natural
phenomena and for the optimization of related industrial applications. Sedimen-
tation and fluidization processes are important examples. Many of the currently
established simulation methods, for instance molecular dynamics or particle hy-
drodynamics, do not resolve the particles in the flow, but treat them as point
masses without explicitly accounting for individual frictional collisions.

In our approach, a 3D lattice Boltzmann (LBM) fluid simulation [9, 2] and a
rigid body dynamics [1] simulation are dynamically coupled in order to fully
resolve the motion of immersed particles. Both programs are fully parallelized
and coupled via an explicit exchange of momenta from the fluid onto the ob-
jects [6, 7], and by modeling moving boundaries on the surface of the objects
to transfer momenta back to the fluid [10]. Further details on the rigid body
dynamics solver and the LBM solver are described in [4] and [3], more details
on the coupling can be found in [5].

Performance Results

In this chapter we present performance and scalability results for the JUGENE
with up to 294912 processor cores.

To compile the program, the GNU C and C++ compiler in version 4.1.2 is used.
Tests with the standard IBM XLC compiler showed a lower performance com-
pared to the GNU compiler when compiling with flag -O2. Higher optimization
was not possible due to internal compiler errors’.

In order to compare the performance values, we present the results in terms
of million lattice updates per second (MLUPS). We evaluate two different sce-
narios, one labeled case A with sparsely packed particles, which appears in
particulate flows and one case B with densely packed particles representative
for sedimentation or segregation processes.

Node Performance of coupled Fluid Structure Interaction
Simulations

We evaluate the node performance of the coupled fluid particle interaction simu-
lations, which will obviously depend on the domain size per core and the number
of objects. The results are shown in Table 1, where the GFlop/s and the memory
bandwidth values are again measured using the automatically available perfor-
mance counters [8].

For the smaller domain size of 40 lattice cells per core, the performance is
in general lower than for domain size of 80 lattice cells due to a larger com-
munication to computation ratio, although the performance of the pure lattice
Boltzmann solver is higher for a domain size of 40° lattice cells per core. When
the number of rigid bodies is increased (case B), the computations for mapping
the objects to the grid, the force evaluation, the movement and the collisions
of the objects are higher compared to simulations with smaller number of ob-
jects (case A), resulting in a lower performance in terms of MLUPS for case B.
Thus, the highest MLUPS value is obtained for a domain size of 80% lattice cells
and case A. For the same domain size and the same test case, also the highest
measured values for GFlop/s and main memory bandwidth are achieved.

Test | Lattice domain | MLUPS | % of peak GFlop/s | % of peak memory
case size per core performance bandwidth
N 403 3.0 4.12 14.61
803 3.24 4.59 22.32
B 403 1.9 3.0 11.18
803 1.92 3.15 15.63

Table 1: Node performance of coupled fluid structure interaction simulations.

IFor higher optimization the XLC returned ”1586-494 (U) INTERNAL COMPILER ER-
ROR” due to problems with variable length array functions. This information was reported
to IBM.

Multi Node Performance of coupled Fluid Structure Inter-
action Simulations

The weak scaling is performed with both scenarios and two different domain
sizes. The experiment is started at 64 cores with a decomposition of 4 x 4 x 4,
when 8 processes communicate in all neighboring directions. Note that place-
ment of MPI processes needs to be done according to the requested torus shape
and thus the underlying network shape on the system to maintain a high per-
formance.

The weak scaling up to 294912 cores of case A and case B is presented in Fig-
ure 1. For case A, the reference values for calculating the efficiency are 44.07
MLUPS for a domain size of 40% lattice cells per core and 47.31 MLUPS for a
domain size of 803 lattice cells per core for measurements with 64 cores. The
lower efficiency for the smaller domain size results from a higher communication
to computation ratio. The efficiency for case B is based on measurements on

Efficiency
o
(o]

©
\‘
\
!

Case A 40x40x40 lattice cells per core
4—a Case A 80x80x80 lattice cells per core
| | @® Case B 40x40x40 lattice cells per core
+ | m-m Case B 80x80x80 lattice cells per core

il R | Ll L I
05700 1000 10000 300000
Number of Cores

o
o

Figure 1: Weak scaling from 64 to 294912 compute cores for sparsely packed
(case A) and densely packed particles (case B).

64 cores, which result in 23.06 MLUPS and 25,14 MLUPS for domain sizes of
40% and 80 lattice cells per core, respectively. Over the whole range of cores,
the efficiency remains over 98% for a domain sizes of 803 lattice sells per core.
Again, the efficiency of the simulation with smaller domain size is lower, com-
pared to the simulation with larger domain size due to the communication to
computation ratio.

Figure 2 illustrates a simulation of a real world scenario. Objects with
density values of 0.8 kg/dm? and 1.2 kg/dm? are immersed in water with density
1kg/dm? and a gravitation field. Thereby light objects will rise to the top, while
heavy objects will fall to the ground.

Figure 2: Segregation simulation of 12013 objects with two different shapes
in different time steps simulated on 2048 cores in a box. Density values of
0.8kg/dm? and 1.2kg/dm3 are used for the objects in water with density
1kg/dm?® and a gravitation field. Light particles are rising to the top of the
box, while heavy particle fall to the bottom.

Conclusion

We have developed an efficient simulation system for the direct numerical sim-
ulation of particulate flows built from a combination of a lattice Boltzmann
fluid simulation and a rigid body physics engine. The results of the workshop
for the weak scaling on the Jugene Blue Gene/P system demonstrate a good
parallel efficiency on the full machine with 294 912 cores. The performance also
confirmed the extension of the code to a pure local treatment of the rigid body
solver. This enables a near-perfect scaling on the full machine. However, be-
cause of long runtimes when writing some output information on all nodes, we
disabled all output besides the timing information for the benchmarking runs.
Still, some of our full machine runs did not complete due to errors caused by
exceeded MPI buffers. We are investigating the problem, but still are not sure
if these are triggered by software errors in our code, or hardware problems of
the machine.

Acknowledgments: We would like to thank Bernd Mohr, Wolfgang Frings
and Lukas Arnold from Jielich Supercomputing Centre (JSC) for their assis-
tance, support and discussions. Also the generous allocation of compute time
on the Jugene system is gratefully acknowledged.

References

[1] M. Anitescu. Optimization-based simulation of nonsmooth rigid multibody
dynamics. Math. Program., 105(1):113-143, 2006.

[2] S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows.
Annu. Rev. Fluid Mech., 30:329-364, 1998.

3]

C. Feichtinger, J. Gotz, S. Donath, K. Iglberger, and U. Riide. Concepts
of waLBerla prototype 0.1. Technical Report 07-10, Computer Science
Department 10 (System Simulation), University of Erlangen-Nuremberg,
2007.

K. Iglberger and U. Riide. Massively parallel rigid body dynamics simula-
tion. Comp. Sci. - Res. Dev., 23(3):159, 2009.

K. Iglberger, N. Thiirey, and U. Riide. Simulation of moving particles in
3D with the Lattice Boltzmann method. Comput. Math. Appl., 55(7):1461—
1468, 2008.

A. J. C. Ladd. Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid
Mech., 271:285-309, 1994.

A. J. C. Ladd. Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech.,
271:311-339, 1994.

G. Lakner, I-H. Chung, G. Cong, S. Fadden, N. Goracke D. Klepacki,
J. Lien, C. Pospiech, S. R. Seelam, and H.-F. Wen. IBM System Blue
Gene Solution: Performance Analysis Tools. pages 29-35, 2008. IBM order
number REDP-4256-01.

S. Succi. The Lattice Boltzmann Equation - For Fluid Dynamics and Be-
yond. Clarendon Press, 2001.

D. Yu, R. Mei, L.-S. Luo, and W. Shyy. Viscous flow computations with the
method of lattice Boltzmann equation. Prog. Aerosp. Sci., 39(5):329-367,
2003.

10

Simulation of Fluid Flow and Mass Transport at
Extreme Scale

Siarhei Khirevich, Anton Daneyko, and Ulrich Tallarek
Department of Chemistry, Philipps University of Marburg

Description of the Code

Flow and mass transport in porous media play a central role in a variety of
analytical, industrial, and natural processes, including chromatographic sepa-
rations, reaction engineering, catalysis, soil remediation, and etc. Detailed un-
derstanding of transport processes in porous media guides the design strategies
and performance for the aforementioned processes. In our study, we address the
phenomena of flow and hydrodynamic dispersion in porous media represented
by confined random packings of the spherical particles, which are the model of,
for instance, packed chromatographic columns [1] or fixed-bed chemical reactors
[2].

Our simulation workflow consists of the following steps:

1. Creation of the random close sphere packing with the help of the Jodrey-
Troy algorithm (JT) [3]. JT starts from random distribution of sphere
centers within a simulation domain. Such a distribution introduces over-
laps between spheres which are iteratively removed by JT. The algorithm
exits when there are no more overlaps exist in the sphere packing.

2. Spatial discretization of the generated packing. This step initializes uni-
form grid and sets up each voxel of the grid to the ’solid’ or "fluid’ according
to the spatial position of the voxel center (inside or outside of the closest
sphere, respectively). We used a spatial resolution of 30 lattice nodes per
particle diameter, which is sufficient for the accurate simulation of the
fluid flow in the random-close sphere packings [4, 5].

3. Simulation of the fluid flow in the packing using the Lattice-Boltzmann
method (LBM) [6]. The method simulates flow of Newtonian fluid solving
the discrete Boltzmann equation. After the simulation is completed, the
resulting fluid flow velocity field is written into a file. Depending on the
problem dimensions, the file size can reach 1TB.

4. Simulation of the advective-diffusive mass transport using the Random-
Walk Particle Tracking method (RWPT) [7] and the fluid velocity filed
obtained on the previous simulation step. The idea of RWPT is to displace

11

(due to advection and diffusion) a large number of inert tracer particles in
the volume of interest and to track the displacement of the tracer ensemble
over time. The goal of this simulation is to analyze the transient behavior
of the hydrodynamic dispersion coefficient and to determine its close-to-
asymptotic value.

Packing generation is done on a single processor-core while discretization, flow
and mass transport simulations are performed using parallel programs (written
in C/MPI). Over 99% of CPU time is spent by programs simulating fluid flow
(LBM) and mass transport (RWPT), therefore, we selected LBM and RWPT
to be scaled up to the whole JUGENE system.

The time to reach close-to-asymptotic value of the hydrodynamic dispersion
coefficient is defined, in particular, by the length scales of spatial heterogeneities
(void space variation within a packing) existing in the random porous media [1].
Confined spherical packings have spatial heterogeneities appearing on the scale
of the whole transverse dimension of the confining container. As a consequence,
we operate with ’long’ computational domains, i.e. longitudinal dimension of a
domain significantly exceeds (by factor of hundreds) the transverse one. This
packing configuration enables the use of the one-dimensional (’slice’) decom-
position of the computational domain. For the extreme scaling workshop, we
prepared a packing with dimensions of 632 x 632 x 294912 lattice nodes re-
flecting a typical size of the simulation domain. An exact choice of the longest
domain dimension (294912 lattice nodes) is arbitrary, the only requirement is
the packing (simulation domain) length must be large enough to observe close-
to-asymptotic behavior of the hydrodynamic dispersion coefficient [4].

Workshop

At the extreme scaling workshop we benchmarked our programs to estimate
strong performance scaling and I/O performance. The selected problem size of
632 x 632 x 294912 lattice nodes resulted in memory requirements of 12TB for
LBM and 6TB for RWPT programs. Due to the memory limitations, we selected
the performance at 32k and 16k processor cores (8 and 4 BlueGene/P racks)
as the baseline for LBM and RWPT, respectively. The strong scaling of LBM
and RWPT is shown on the Figure 1la. Both LBM and RWPT demonstrate an
identical scaling behavior, which is related to the similar decomposition tech-
niques used in both of the methods and, consequently, similar distribution of
fluid nodes (ny;) among processors. In case of LBM, ny; defines the number of
lattice links to be processed while for RWPT ny; specifies the number of tracer
particles associated with a given processor (assuming uniform concentration of
tracer particles in the fluid phase of the packing). Non-uniformity of ny; dis-
tribution among processors leads to workload imbalance, and is caused by two
factors:

1. The smallest indivisible data chunk for the implemented decomposition
procedure and a given problem size is a two dimensional layer with di-

12

20 T T T T T T T T T T

. 10 F b) o 1
g 16 n © ©
= E s | read (in-house code) o
g S 0 o
S -
= = 6 4
(5] +
N =2
o 8t o
: N <
= [=}
E E
£ 4T af " om g waite (MPLT/O) .
= " =
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of processor cores (x 1024) Number of processor cores (x 1024)

Figure 1: a) Performance scaling on JUGENE system. The upper number in each pair
indicates the ratio of the longitudinal dimensions of the longest to the shortest decomposed
subdomains. The lower number is the fraction of the processes with the longest domain length.
b) I/O performance of LBM (file write) and RWPT (file read).

mensions of 632 x 632 x 1 lattice nodes. The whole simulation domain
consists of L, = 294912 silces, which may or may not be evenly divisible
by the number of allocated processor cores n. The remainder of the L, /n
slices, if present, is distributed among some of the processes, which yields
a non-uniform distribution of n ;.

2. Non-uniform distribution of ns; on the lattice is an inherent property of
the random porous media model (for the packing used in simulations,
the ratio between maximal 1 f; ma, and minimal 7 i, numbers of fluid
nodes per lattice layer is 1.27).

Depending on whether L, is a multiple of the current processor number n or not,
only the second or both factors cause workload imbalance. More efficient scaling
of RWPT can be explained by the larger ratio of computation to communication
times compared to LBM.

I/O benchmarks (one velocity field file with size of 1.3 TB) were performed
using MPI I/0 and in-house developed approaches. The latter was implemented
because on previously employed BlueGene/P system MPIT/O was not available.
During preparations for the extreme scaling workshop we found some issues
with file writing on JUGENE file system using our approach, therefore we im-
plemented MPI I/O. The I/O performance results are presented on the Figure
1b. Performance decrease of MPI I/O write with increasing number of allocated
cores is probably related to the increasing amount of events when more than
one MPT task access the same file system block (2MB) at the same time. Read
benchmarks show significant performance increase up to 100k processor cores
and then performance stays roughly constant with further increase of allocated
cores. The achieved read performance of 9GB/s is approximately 30% of the
total file system bandwidth.

13

Conclusion

The extreme scaling workshop was very helpful for us: results achieved on the
workshop demonstrate current performance and limits of both LBM and RWTP.
Fruitful discussions with experts available during the workshop, Wolfgang Frings
and Pascal Vezolle, resulted in new ideas on further improvements of all aspects
of the codes performance (single-core, parallel, and I/0).

References

1]

S. Khirevich, A. Holtzel, A. Seidel-Morgenstern, and U. Tallarek. Time and
length scales of eddy dispersion in chromatographic beds. Anal. Chem. 81:
7057-7066 (2009)

H. Freund, J. Bauer, T. Zeiser, and G. Emig. Detailed simulation of transport
processes in fized-beds. Ind. Eng. Chem. Res. 44: 64236434 (2005)

W. S. Jodrey and E. M. Tory. Computer simulation of close random packing
of equal spheres. Phys. Rev. A 32: 2347-2351 (1985)

R.S. Maier, D. M. Kroll, R. S. Bernard, S. E. Howington, J. F. Peters, and
H. T. Davis. Pore-scale simulation of dispersion. Phys. Fluids 12: 2065-2079
(2000)

R. S. Maier and R. S. Bernard. Lattice-Boltzmann accuracy in pore-scale
flow simulation. J. Comput. Phys. 229: 233-255 (2010)

S. Chen and G. D. Doolen. Lattice boltzmann method for fluid flows. Annu.
Rev. Fluid Mech. 30: 329-364 (1998)

P. Salamon, D. Fernandez-Garcia, and J. J. Gomez-Hernandez. A review
and numerical assessment of the random walk particle tracking method. J.
Contam. Hydrol. 87: 277-305 (2006)

14

Highly Resolved Simulations of Turbulent Flows
in Complex Geometries with the YALES2 Solver

V. Moureau, P. Domingo and L. Vervisch
CORIA, CNRS, Université et INSA de Rouen

Description of the Code

YALES2 aims at the solving of two-phase combustion from primary atomization
to pollutant prediction on massive complex meshes. It is able to handle effi-
ciently unstructured meshes with several billions of elements, thus enabling the
Direct Numerical Simulation of laboratory and semi-industrial configurations.
The solvers of YALES2 cover a wide range of phenomena and applications, and
may be assembled to address multi-physics problems (Moureau, 2010).

YALES2 solves the low-Mach Navier-Stokes equations with a projection
method for constant and variable density flows. These equations are discretized
with a 4th-order central scheme in space and a 4th-order Runge-Kutta like
scheme in time. The efficiency of projection approaches is usually driven by
the performances of the Poisson linear solver. In YALES2, the linear solver
is a highly efficient Deflated Preconditioned Conjugate Gradient that has two
mesh levels. Another issue in such large computations is the mesh generation.
The strategy in YALES2 is to generate meshes sufficiently resolved to describe
the geometry with around 50 million elements and then to automatically refine
them with non-degenerescent tessellation algorithms (Rivara, 1984). Finally,
any CPU memory issues are alleviated thanks to mesh partitioning. A 10 bil-
lion cell mesh for instance would consist of at least 10,000 parts written in
compressed HDF5 files.

Accomplished Objectives

During the workshop, direct numerical simulation of an industrial swirl burner
was performed with a mesh of 21 billion tetrahedral cells. The mesh resolution
of 50 umallowed to have around 1700 points in each direction of the combustor.
Results obtained before the workshop with a 2.6 billion tetrahedral-based mesh
are shown in Fig. 1. More details about the geometry and its modeling may
be found in Moureau et al. (2007); Galpin et al. (2008); Roux et al. (2005);
Moureau et al. (2010).

The code was able to run during ten iterations with this huge
mesh on 32768 compute nodes, i.e. 32 racks, in SMP mode. The

15

Figure 1: Smallest resolved vortices in the iso-thermal computation of the
PRECCINSTA burner with a mesh of 2.6 billion cells.

YALES2 weak scaling on Blue Gene/P

Up to 32768 compute nodes and 21 billion tetrahedrons

i T T T T T T T T ™
— linear scaling
32768 — 32768
® YALES2
24576 |— — 24576
o
=1 | i
6384 - 215’.tets {16384
8192 — 8192
0H®14M tets | . | . | . | =0
0 8192 16384 24576 32768

Number of cores

Figure 2: Weak scaling of YALES2 on Jugene

16

code also ran on 65536 compute nodes, i.e. 64 racks, in SMP and
VN modes but the duration of the grid partitioning phase and the
limited available runtime prevented to begin the flow solver iterations.
During the workshop, the grid partitioning, which was identified as the main
bottleneck, was improved in several manners to shorten the initialization phase.
For instance, a new multi-block format for pre-partitioned meshes was coded
and tested successfully. It consists in storing several mesh blocks in the same
mesh partition file. This dual partitioning allows to pre-partition a mesh with
16384 cores in 262144 blocks stored in 16384 files as a first step before running
on 64 racks of the machine. From the 10 flow solver iterations of the successful
run, the speed-up was measured and it is reported in Fig. 2.

The participation to the workshop was a unique opportunity to highlight the
main bottlenecks in the handling of such massive meshes. Grid partitioning and
file IO remain the great challenges for future finite-volume flow solvers. The
performances measured during the workshop also shows that more than two
mesh levels may be required in the solving of the Poisson equation to obtain a
better speed-up.

Acknowledgements

The authors would like to acknowledge Bernd Mohr and the team of the Juelich
Supercomputing Centre for the workshop organization and their kind support.
Some of the runs were prepared on the Blue Gene/P machine at IDRIS in
France under the allocation 2009-020152 made by GENCI (Grand Equipement
National de Calcul Intensif).

References

GALPIN, J., NAUDIN, A., VERVISCH, L., ANGELBERGER, C., CoLIN, O. &
DoMiNGo, P. 2008 Large-eddy simulation of a fuel-lean premixed turbulent
swirl-burner. Combustion and Flame 155 (1-2), 247 — 266.

MOUREAU, V. 2010 nonpremixed.insa-rouen.fr/~moureau/yales2.html.

MoUREAU, V., DoMINGO, P. & VERvISCH, L. 2010 Large-eddy simulations
and direct numerical simulations of turbulent premixed combustion in an
industrial swirl burner. submitted to Combustion and Flame .

MoOUREAU, V., MiNoT, P., PirscH, H. & BERAT, C. 2007 A ghost-fluid
method for large-eddy simulations of premixed combustion in complex ge-
ometries. Journal of Computational Physics 221 (2), 600 — 614.

RivArA, M.-C. 1984 Mesh refinement processes based on the generalized bi-
section of simplices. SIAM Journal on Numerical Analysis 21 (3), 604-613.

17

Roux, S., LARTIGUE, G., PoinsoT, T., MEIER, U. & BERAT, C. 2005 Studies
of mean and unsteady flow in a swirled combustor using experiments, acoustic
analysis, and large eddy simulations. Comb. Flame 141 (1-2), 40-54.

18

Scalability of the Nekb000 Spectral Element Code

Stefan Kerkemeier, ETH Zurich
Scott Parker, Argonne National Laboratory
Paul Fischer, Argonne National Laboratory

Description of the Code

Nek5000 (http://nek5000.mes.anl.gov) is an open-source CFD code for the sim-
ulation of unsteady incompressible / low Mach number fluid flow, heat transfer,
combustion, and MHD in general three-dimensional domains. It features a sta-
bilized formulation that makes it appropriate for direct numerical simulation
(DNS) and large eddy simulation (LES) of turbulent flows.

Spatial discretization is based on the spectral element method (SEM), which
is a high order weighted residual technique that combines the geometric flexi-
bility of the finite element method (FEM) with the tensor-product efficiency of
spectral methods. In the SEM, the solution is approximated by tensor product
polynomials of order N on each of E elements, giving rise to n ~ EN 3 unknown
basis coefficients for each field (velocity, pressure, temperature, etc.). Typi-
cal values of N are 8-16, which implies roughly a thousandfold decrease in the
number of elements compared to an FEM mesh having the same number of
gridpoints, n.

Nek5000 employs high-order semi-implicit timestepping schemes that decou-
ple the Navier-Stokes equations into independent advection, diffusion, and pres-
sure projection substeps. The principal computational bottleneck in simulating
unsteady incompressible and low-Mach number flows is the elliptic problem
governing the pressure, which must be computed implicitly at each timestep.
The SEM-based Poisson system is solved with preconditioned conjugate gradi-
ents or GMRES. Preconditioning is based on variational multigrid using local
overlapping Schwarz methods for element-based smoothing at resolution N and
~ N/2, coupled with a global coarse-grid problem based on linear elements,
which is solved in parallel using algebraic multigrid. To efficiently use the Blue
Gene/P system architecture tuned computational and communication kernels
are implemented.

The code is used by dozens of institutions world-wide. Among other things, it
has been used to study long-standing problems of spatio-temporal chaos within
Rayleigh-Benard convection problems and transition to turbulence in vascular
flows. Nek5000 is currently being used for several large-scale problems, includ-
ing detailed analysis of rod-bundle flows in next generation nuclear reactors,
ocean current modeling, and turbulent autoignition with realistic kinetics and

19

170 T T 19.3% of peak
& (EN) = (2.1M.15) P

\

FL
N
o
(=]
T T T T T T T T T T T T T T T I
‘\
N Y T O I i A

30 Pa— : ‘
32768 65536 131072 163840 262144

cores

Figure 1: Scaling of Nek5000 on Jugene

transport.

Accomplished Objectives

Nek5000 was successfully run on all 72 racks of the Julich Supercomputing
Centre’s Blue Gene/P system. Unexpected issues related to non-power-of-two
processor partitioning resulted in non-optimal performance at 72 racks, but
excellent scaling was observed for up to 262,144 cores (64 racks). The plot
above shows strong scaling results for a simulation with a (128 x 128 x 128)
spectral element mesh of order N=15 (7.1 billion gridpoints).

The vertical axis is the measured Flop rate for the first 50 time steps of the
simulation. The horizontal axis is the number of nodes used, with 4 processor
cores per node. Over 71% parallel efficiency is realized for strong scaling from
8192 nodes (32,768 cores) to 65,536 nodes (262,144 cores).

In additional to scalability, Nek5000 was measured to achieve 27% of peak
performance per core on the Blue Gene/P at 8192 nodes, and 19.3% of peak at
65,536 nodes a peak floating point of 172 TFLOPS.

20

Summary

The Nek5000 runs on the Juelich BG/P demonstrated excellent scaling (71%) to
262,144 cores and sustained 172 TFLOPS. In addition these runs constituted the
largest Nek5000 runs to date, with problem sizes exceeding 7 billion gridpoints.
This figure is significant, in that it demonstrates, for the first time, the 64-bit
integer global addressing feature of Nek5000’s central communication kernel.

References

1. P.F. Fischer, J. Lottes, W.D. Pointer, and A. Siegel, Petascale algorithms
for reactor hydrodynamics, J. Phys. Conf. Series (2008).

2. P.F. Fischer, W.D. Pointer, A. Obabko, J. Smith, and H. Childs, Simula-
tion of turbulent diffusion in 217-pin wire-wrapped fast reactor subassem-
blies, Tech. Report Technical Report ANL-AFCI-267, Argonne National
Laboratory, 2009.

3. P.F. Fischer and J.W. Lottes, Hybrid Schwarz-multigrid methods for the
spectral element method: Extensions to Navier-Stokes, Domain Decom-
position Methods in Science and Engineering Series (R. Kornhuber, R.
Hoppe, J. Priaux, O. Pironneau, O. Widlund, and J. Xu, eds.), Springer,
Berlin, 2004.

4. H.M. Tufo and P.F. Fischer, Fast paral lel direct solvers for coarse-grid
problems, J. Parallel Distrib. Comput. 61 (2001), 151-177

21

22

Full Scale Simulation of Coronary Arteries in
Presence of Red Blood Cells

Amanda Peters, Harvard University
Simone Melchionna, EPFL and Harvard University
Efthimios Kaxiras, EFPL and Harvard University
Jonas Latt, EPFL
Massimo Bernaschi, Consiglio Nazionale delle Ricerche
Mauro Bisson, Consiglio Nazionale delle Ricerche
Sauro Succi, Consiglio Nazionale delle Ricerche
and Harvard University

Description of the Code

With the present proposal, we intend to carry out, for the first time, a complete
simulation of a coronary arterial system, as reconstructed from Multi-Detector
Computed Tomography scans, with the goal of observing the distribution of
red blood cells in the whole arterial system. To achieve this goal we will ex-
ploit a multi-scale Lattice Boltzmann/Molecular Dynamics (LB/MD) simula-
tion method developed by our group and employed by our multi-physics Soft-
ware Package, MUPHY. The LB solver exploits the intrinsic parallelism of the
mesh-based method to enable solving of the fluid dynamic equations. The fluid
is capable of accommodating suspended bodies, such as the highly anisotropic
red blood cells, and the coupling between blood plasma and red blood cells is
taken into account by the simulator. The evolution of red blood cells is de-
scribed by a Molecular Dynamics algorithm, highly parallelized and equipped
with a dynamic task-transfer algorithm to optimize load balancing.

For the hemodynamic solution, our goal requires a mesh with very high
resolution in order to resolve the presence of red blood cells and cell crowding
close to the arterial walls. With this, we can compute with high accuracy the
endothelial shear stress, the crucial cause of atherogenesis (plaque formation)
and the subsequent atherosclerosis. With a resolution corresponding to a mesh
spacing of 10 um we will be able to resolve the structure of red blood cells at
high concentration (50% in volume) as found in physiological conditions. This
will result in 1.6 x 10° voxels and 8 x 10® red blood cells. If possible, we will
also attempt the much more challenging case corresponding to a mesh spacing
of 5 pm, resulting in about 13 x 10° voxels and 6.5 x 10° red blood cells. These
resolutions necessitate the use of a large-scale system such as Jugene.

23

Accomplished Objectives

Our main accomplishments from our time at the workshop are listed below:
e Successfully scaled to the full 72 rack system.
e Increased to resolution of 5 pm.
e Coupled the Lattice Boltzmann solver with 10 million red blood cells.
e Achieved 64 TeraFlops.

This analysis is performed by increasing the size of the partitions at a fixed
problem size, in an effort to analyze the impact of the number of cores on the
total simulation time. In Table 1, we show the elapsed time per time-step for
the full simulation, as well as for the LB and MD components separately. There
are a few points of interest. First, the elapsed time decreases significantly with
the number of cores, with a speed-up of 43.5 between the 4,096 versus 294,912
processor configurations (see Fig. 1), corresponding to a parallel efficiency in
excess of 60 % (see Fig. 2). This result is significant since the average number
of mesh points per computational core becomes fairly low (i.e., ~ 3,300) on the
full configuration of 294,912 cores. These figures are basically the same for the
MD and LB sections of the application. Second, we notice that the MD and
LB sections remain in a fairly satisfactory balance with each other across the
whole range of cores, thereby highlighting the excellent quality of the workload
partitioning.

Table 1: Breakdown of the elapsed runtime
Cores LB MD LB+MD
4,096 0.4761 0.04633 .5224

147,456 0.0151 0.419 0.0193
294,912 .0088 .0042 .0130

This simulation that we were able to complete at the Juelich Extreme Scaling
workshop contained one-billion fluid nodes that were embedded in a bounding
space of one trillion. We were able to couple this fluid solver with the concurrent
simulation of ten-million red blood cells.

This achievement is the result of several key pieces of work, namely i) the
solution of the formidable graph-partitioning problem prompted by the need of
evenly distributing the workload associated with the complex arterial geometry,
across the entire 72 rack system; ii) methods to preserve load balancing between
the fluid-dynamics and the molecular-dynamics simulation in a complex patient-
specific geometry; iii) the innovative modeling techniques required to manage
the self-consistent fluid-particle interactions in complex geometries.

24

Figure 1: Semilog plot of the speed-up for the LB (circles) and MD (squares)
components, for the full simulation (diamonds), and for the ideal regime (dashed

Speed-Up (over 4,096 Cores)

80

D
(=]
T

N
(=)
T

N
o
T

[& Ju: / -

4 LB+MD /
Ideal / i

,096

| | |
16,384 147,456 294,912

Cores

line) versus the number of cores.

Efficiency (%)

Figure 2: Semilog plot of the parallel efficiency for the LB (circles) and MD
(squares) components, for the full simulation (diamonds) versus the number of

cores.

10

90

[0]
o

L | MD |
9 LB+MD
701 —
60— —
5 \ \ \
49096 16,384 147,456 294,912
Cores

25

26

Scaling Parallel Fast Fourier Transform on

BlueGene/P

Michael Pippig and and Daniel Potts
Chemnitz University of Technology

Description of the Code

The three-dimensional discrete Fourier transform provides the basis of many
algorithms in scientific computing and therefore a highly scalable implementa-
tion for massively parallel systems such as BlueGene/P is desirable. We con-
sider the three-dimensional input dataset to be of size Ny x Ny X No with
Ny > N1 > N,. Unfortunately the FFTW [3] software package, that is appreci-
ated for its portable high-performance FFT implementations, lacks scalability
to huge core counts. The reason is that the input dataset is split along one
dimension to distribute it on a given number of cores. Hence at most Ny MPI
processes can be used efficiently. Eleftheriou et al. [2] proposed a volumetric
domain decomposition to overcome this scalability bottleneck and implemented
a software library [1] for power of two FFTs customized to BlueGene/L systems.
They split the dataset along two dimensions and therefore were able to increase
the number of MPI processes with Ny x Ns.

During the workshop we tested the scaling behavior of a new parallel complex
to complex FFT implementation (PFFT), that combines FFTWs flexible user
interface and hardware adaptiveness with the highly scalable two-dimensional
data decomposition. Although the parallel FFT implementation from S. Plimp-
ton [5] and the well known P3DFFT [4] already use two-dimensional data decom-
position, they miss a large part of FFTWs flexibility. Since we exploit FFTW to
implement both ingredients of the three-dimensional FFT algorithm, that are
local one-dimensional FFTs and communications in processor groups along the
rows and columns of a two-dimensional processor mesh, the implementation can
directly transfer FFTWs flexibility to the parallel algorithm. Therefore we are
able to generalize our algorithm straight forward to d-dimensional FFTs, d > 3,
real to complex FFTs and even completely in place transformations. Further
retained FFTW features like adjustable blocksize, the selection of planning ef-
fort via flags and a separate communicator handle distinguish PFFT from other
public available parallel FFT implementations. Support of automatic ghost
cell creation and truncated FFTs complete PFFTs unique flexibility. It turned
out that especially these features are essential to implement an efficient highly
scalable generalization of FFT for nonequispaced nodes [6].

27

Accomplished Objectives

Our main intention was to analyze the strong scaling behavior of FFTs up to
the full BlueGene/P machine in Jiilich. During the workshop we were able
to run FFTs of size 5133 and 10243 on up to 64 of the available 72 racks.
Since P3DFFT only supports real to complex FFTs we applied P3DFFT to the
real and imaginary part of a complex input array to get comparable times to
PFFTs complex to complex FFTs. The test runs consisted of 10 alternately
calculations of forward and backward FFTs. Since these two transforms are
inverse except for a constant factor, it was easy to check the results after each
run. The average wall clock time as well as the average speedup of one forward
and backward transformation can be seen in figure 1 for FFT of size 5122 and in
figure 2 for FFT of size 10243, Memory restrictions force P3DFFT to utilize at
least 32 cores on BlueGene/P to calculate a FFT of size 5123 and 256 cores to
perform a FFT of size 1024. Therefore we chose the associated wall clock times
as references for speedup and efficency calculations. Note that PFFT can run
these FFTs on half the cores because of less memory consumption. Anyhow we
only recorded times on core counts which both algorithms were able to utilize
to get comparable results.

Unfortunately the PFFT test run of size 10243 on 64 racks died with a RAS
event. Nevertheless our measurements show that the scaling behavior of PFFT
and P3DFFT are quiet similar. Therefore we expect roughly the same runtime
for PFFT of size 10243 on 64 racks as we observed for P3SDFFT. Our FFT
test run of size 10243 on 72 racks crashed and exposed a limitation of our data
decomposition scheme for very unbalanced data distributions that we were not
aware by then.

We also performed separate time measurements of the local FFT calcula-
tions and the global communications. This gives an inside to the calculation
to communication ratio of FFTs on large core counts as we can see in table
1 for a FFT of size 5123. Note that 262144 is the maximum number of cores
we can efficiently utilize for a FFT of this size. This also means that every
core calculates only one local FFT of size 512 in each of the three calculation
steps. Therefore the communication takes the largest part of the runtime. The
growing communication ratio for increasing core counts also explains the FFT
typical decrease of efficiency seen in figure 3.

cores 64 1024 16384 262144
PFFT 53.9% 79.6% 80.5% 96.0%
P3DFFT || 59.2% 73.7% 77.2% 95.6%

Table 1: Communication ratio of FFT of size 5123.

28

Figure 3: Efficiency for FFT of size 5123 (left) and 10243 (right).

number of cores

29

number of cores

I I I T
n 0 218 1 Perfect n
& 107 a s ||—e— PFFT |
g ~ 27 || —+—P3DFFT
2 107 1=
+ ol 212 - -
d a2 3
'—8 10 —— Perfect & 29 B
= 1073 || —e— PFFT |
g —a— P3DFFT 261 h
T T T | | | | | | |
26 29 212 215 218 26 29 212 215 218
number of cores number of cores
Figure 1: Runtime measurements for FFT of size 5123.
I I
n 218 1 Perfect n
i= 100 |- | —o— PFFT
g a. 915 {{ —a— P3DFFT .
= =
= 1077 1 18 912 | N
o) 2,
) —— Perfect |2
% 10—2 t{ —o— PFFT | 29 | i
=3 —&— P3DFFT
T T | | | | | |
29 212 215 218 29 212 215 218
number of cores number of cores
Figure 2: Runtime measurements for FFT of size 10243.
— Perfect —o— PFFT —a— P3DFFT ‘ ’ — Perfect —o— PFFT —a— P3DFFT ‘
1 T T T T T 1 T T T T
. 081 1., 081 s
[] [®]
g 06 1 06] 1
(] 9]
€ 04p £ 04f 7
0.2 - s 0.2 |
0 T ! ! !
26 29 212 215 218 29 212 215 218

Conclusion

Our runtime tests up to 262144 cores of the BlueGene/P supercomputer prove
PFFT to be as fast as the well known P3DFFT [4] software package, while
FFTWs flexibility is still preserved. To our knowledge no public available par-
allel FFT library has been tested to such great core counts by now. These
measurements alleviate the decision-making process, whether a parallel FFT
should be used to exploit the full BlueGene/P system.

Acknowledgments

We are grateful to the Jiilich Supercomputing Center for providing the compu-
tational resources on Jiilich BlueGene/P. The great support by the workshop
organization team improved our handling of the BlueGene/P machine, gave a
better understanding of the underlying hardware architecture and even led to
new ideas to improve our algorithms. First tests on customized processor map-
pings in cooperation with Lukas Arnold showed a significant time reduction of
the communications with 8192 cores. This encourages us to investigate the im-
pact of customized mappings for greater core counts as well. Conversations with
other workshop attendees were very helpful to avoid usage and coding errors in
the future. The work of Michael Pippig was supported by the BMBF grant
01THO8001B.

References

[1] M. Eleftheriou, J. E. Moreira, B. G. Fitch, and R. S. Germain. Parallel FFT
subroutine library. http://www.alphaworks.ibm.com/tech/bgl3dfft

[2] M. Eleftheriou, J. E. Moreira, B. G. Fitch, and R. S. Germain. A volumetric
FFT for BlueGene/L. In T. M. Pinkston and V. K. Prasanna, editors, HiPC,
volume 2913 of Lecture Notes in Computer Science, pages 194-203. Springer,
2003.

[3] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93:216-231, 2005.

[4] D. Pekurovsky. P3DFFT, C subroutine library. http://www.sdsc.edu/us/
resources/p3dfft

[5] S. Plimpton. Parallel FFT subroutine library. http://www.sandia.gov/
“sjplimp/docs/fft/README.html

[6] D. Potts. The nonequispaced FFT: An indispensable algorithm for applied
science. http://www.reviews.com/hottopic/hottopic_essay_08.cfm

30

Extreme Scaling of the BQCD Benchmark

Hinnerk Stuben
Konrad-Zuse-Zentrum fiur Informationstechnik Berlin

Momme Allalen
Leibniz Supercomputing Centre, Garching

Description of the Code

We study extreme scaling of the conjugate gradient solver of BQCD (Berlin
Quantum ChromoDynamics program). BQCD is used as a benchmark pro-
gram in procurements at our centres as well as in the DEISA and PRACE
projects [1, 2], and it is a code basis in the QPACE project [3].

QCD is the theory of strongly interacting elementary particles. The the-
ory describes particle properties like masses and decay constants from first
principles. The starting point of QCD is an infinite-dimensional integral. In
order to study the theory on a computer space-time continuum is replaced
by a four-dimensional regular finite lattice with (anti-) periodic boundary
conditions. After this discretisation, the integral is finite-dimensional but
still rather high-dimensional. The high-dimensional integral is solved by
Monte-Carlo methods. BQCD is a program that simulates QCD with the
Hybrid Monte-Carlo algorithm.

Hybrid Monte-Carlo programs have a compute intensive kernel, which is
an iterative solver of a large system of linear equations. In BQCD we use the
standard conjugate gradient solver. Depending on the physical parameters
80 % or up to more than 95 % of the execution time is spent in the solver. The
dominant operation in the solver is the matrix times vector multiplication.
In the context of QCD the matrix involved is called hopping matriz. The
hopping matrix is large and sparse. The entries in a row are the eight nearest
neighbours of one site of the four-dimensional lattice.

QCD programs are parallelised by domain decomposition. The nearest
neighbour structure of the hopping matrix implies that the boundary values
(surfaces) of the input vector have to be exchanged between neighbouring

31

lattice: 643 x 128 (on 72 racks: 643 x 144)

#racks #cores Mflop/s overall local lattice boundary global

per core Tflop/s exchange sums

1 4.096 341 1.40 16 x 8 x 8 x 8 9% 1%

2 8.192 335 2.74 16 x8x8x4 18 % 5%

4 16.384 324 5.31 16 x8x4x4 24 % 6 %

8 32.768 333 10.9 16 x4 x4x4 27% 7%

16 65.536 301 19.7 16 x4 x4 x2 31 % 8%

32 131.072 250 32.8 16 x4 x2x2 38% 9%

72 294.912 203 59.8 16 x2x2x2 50 % 14 %
lattice: 963 x 192 (on 72 racks: 96% x 216)

#racks #cores Mflop/s overall local lattice boundary global

per core Tflop/s exchange sum

1 4.096 380 1.56 24 x 12 x 12 x 12 14 % 3%

32 131.072 366 48.0 24 x6x3x3 20 % 4%

72 294.912 353 104.1 24 x3x3x3 25% 5%

Table 1: Strong scaling results for the conjugate gradient solver of BQCD.
The last columns indicate the fraction of time spent in communication origi-
nating from boundary exchange (hopping matrix multiplication) and global
sums (dot products in the solver). (We do not understand why the fractions
are relatively high for the large lattice on 1 rack.)

processes in every iteration of the solver. The boundary exchange is com-
munication intensive because the local lattices are typically small. At the
single CPU level QCD programs benefit from the fact that the basic opera-
tions involve the small complex matrices. However, communication loss can
become quite pronounced (see Table 1).

It is interesting to use BQCD as a benchmark because we understand
it very well and it is a good indicator for the quality of the communication
network of a parallel computer. At an abstract level it represents one class
of supercomputer applications: iterative solvers with matrices appearing in
problems with nearest neighbour stencils on Cartesian grids.

BQCD is written in Fortran and parallelised with MPI and OpenMP. In
real production the hopping matrix multiplication is very often implemented
using low level programming techniques [4, 5|. Here we use the Fortran
program which is a portable benchmark.

32

linear scaling
100 + 96x192 lattice —e— . 1
64x128 lattice o i

wn
r
IS
10t @ 1
l,@"/
O
1 =" 1 1
1000 10000 100000 1e+06

number of cores

Figure 1: Strong scaling of the conjugate gradient solver of BQCD for 963 x
192 and 642 x 128 lattices. The dotted line indicates linear scaling. Any
linear scaling is parallel to this line.

Accomplished Objectives

Strong scaling. We studied strong scaling for two lattice sizes: 642 x 128
and 963 x 192. On the full machine we extended the lattices to 643 x 144
and 963 x 216 in order to fit to the torus of the BlueGene network. We
chose these lattice because on the full machine the local lattice sizes are the
same as the ones used in a scaling study on the BlueGene/L [4]. On the full
machine the local lattices are 16 x 23 and 24 x 3% (the dimensions of the
torus network are 4 cores x 32 x 32 x 72). The 643 x 144 lattice was also
used in [5].

Our strong scaling results are given in Table 1 and plotted in Figure 1.
We see that on the smaller lattice scaling is almost linear up to 8 racks. Per-
formance per core drops if one or more local lattice dimensions become 2.
On the full machine 6 % of the peak performance was obtained. It is in-
teresting to compare with [5] where low level programming techniques were
employed and performance in this extreme case (the surface to volume ratio
is 3.125) is about three times better.

33

The larger lattices scales well throughout. In this case we measured
10.4% of the peak performance on the full machine.

Mapping. It is important that the decomposition of the lattice matches
the physical torus of the communication network. In test runs we have
observed that performance drops up to 25 % if the mapping to the machine
is bad. We determine a good mapping by analysing the value of the variable
LOADL BG_SHAPE and permuting the letters in the TXYZ argument to the
-mapping parameter of mpirun accordingly.

Hybrid parallelisation with MPI and OpenMP. If the communication
overhead becomes bigger one might profit from a hybrid parallelisation.
BQCD has this capability. However, we found that hybrid runs were al-
ways a few percent slower than pure MPI runs.

I/0. Tt was nice to observe that the approach to I/O which was im-
plemented 10 years ago using MPI-1 worked reasonably even on the full
machine. We measured I/O rates between 3 and 5 GByte/s which includes
reordering and gathering data as well as calculating checksums on the fly.

Summary

Running BQCD on the full BlueGene/P at JSC was very helpful for bench-
marking activities. With regard to benchmarking future supercomputers it
is important to know from experience that there are no practical limitations
in scaling the program to extreme numbers of cores.

References

[1] http://www.deisa.eu/science/benchmarking/codes/bgcd

[2] http://www.prace-project.eu/documents/
public-deliverables/PublicRelease-D7.2.pdf
http://www.prace-project.eu/documents/d8-3-2.pdf

[3] http://en.wikipedia.org/wiki/QPACE

[4] T. Streuer and H. Stiiben, Simulations of QCD in the Era of Sustained
Tflop/s Computing, Advances in Parallel Computing 15 (2008) 535-542.
http://www.fz-juelich.de/nic-series/volume38/streuer.pdf

[5] S. Krieg and T. Lippert, Tuning Lattice QCD to Petascale on Blue
Gene/P, Forschungszentrum Jiilich, IAS Series Vol. 3 (2010) 155-164.

34

Hydrodynamic Turbulence Induced by
Sedimenting Particles

M. Uhlmann
Institute for Hydromechanics, Karlsruhe Institute of Technology

Code description

We are investigating the influence of solid heavy particles upon fluid turbulence.
The suspension is dilute, i.e. the solid volume fraction is below one percent, and
yet particles can have a significant impact upon the macroscopic flow char-
acteristics. Among many scientifically relevant questions the following are of
particular interest for us: how is the settling velocity of particles affected by
possible collective and/or turbulence effects? What is the average wake struc-
ture of the settling particles? What are the characteristics of particle trajectories
(dispersion)?

Computationally the present study is aiming at raising the standard for the
direct numerical simulation (DNS) of particulate flow by increasing the system
size such that O(10°) particles (under dilute conditions) can be accommodated.
The specific objective of the simulations during the BG/P Extreme Scaling
Workshop was to gather information on the behavior of our numerical strategy
and its parallel implementation when executing on a large number of parallel
tasks, well beyond usual production runs. The challenge is to scale up despite
the inherently implicit nature shared by virtually all numerical algorithms for
the incompressible Navier-Stokes equations.

The Navier-Stokes equations for incompressible flow around moving solid
particles are solved by means of a finite-difference/immersed-boundary method
(Uhlmann, J. Comput. Phys., 209(2):448-476, 2005) i.e. we use a stationary
uniform and isotropic Cartesian mesh. A parallel multi-grid solver (relying on
three-dimensional Cartesian domain decomposition) is applied to the discrete
form of the Poisson equation for pseudo-pressure. Due to the implicit discretiza-
tion of the viscous terms we also need to solve discrete Helmholtz problems (one
for each space direction) at each Runge-Kutta substep; these three-dimensional
problems are reduced to one-dimensional sweeps by means of approximate fac-
torization, and the resulting tri-diagonal systems are solved by means of the
parallel algorithm of Mattor et al. (Parallel Computing, 21:1769-1782, 1995).
For this purpose we use three additional one-dimensional Cartesian communi-
cators (one for each space direction). It can be seen that the problem requires
almost exclusively next neighbor communication (i.e. exchange of “ghost cell”

35

data), based on the 26 neighboring tasks (considering a cubical local grid, there
is data in 6 planes, 12 edges and 8 corners to be exchanged). This means that
the predominant point-to-point communication is either between direct “neigh-
bors” (in a three-dimensional torus) or between nodes which can be reached
by at most two hops (“diagonal” neighbors). Collective communication takes
place at two points in our algorithm (iterative linear system solver — evaluating
the residual, and time step computation), both requiring “allreduce” operations.
Concerning the particle-related communication, the same communication stencil
(next neighbors including “diagonal” neighbors) is required for treating particles
overlapping the processor boundaries.

Here we consider the case of particles sedimenting under gravity in initially
stagnant fluid in a tri-periodic domain, under the conditions which have been
studied experimentally by Parthasarathy and Faeth (J. Fluid Mech., 220:485—
514, 1990) at a Reynolds number (based upon particle settling velocity and
diameter) of 150.

Figure 1: Left: the Eulerian grid around one particle; the red dots indicate the
interpolation points on the surface. Center: the instantaneous spatial particle
distribution in a preliminary short-time simulation of 27000 sedimenting spheres.
Right: corresponding wake structures, depicted in a small sub-volume (green
outlined box in center plot). The terminal Reynolds number was 300.

Accomplished Objectives

From the weak scaling results given in table 1 it can be seen that we lose a
certain amount of parallel efficiency when increasing the number of processors
(not entirely unexpected), but that there is a clear bottleneck when passing
from 32 racks (131072 cores) to 64 racks (262144 cores). Incidentally, it can be
seen by comparing cases 9a and 9b that the number of particles does not have
a significant impact upon the execution time.

In theory, our type of communication is well suited to the network hard-
ware installed on JUGENE. Therefore, we suspect that either (a) in the runs

36

performed so far the MPI tasks were not optimally mapped to the execution
cores, or (b) the way the neighbor communication is scheduled in our code (the
messages to/from all neighbors are dispatched simultaneously in a non-blocking
fashion) was not optimal. Several potential remedies could already be identified
during the workshop, and further analysis will be carried out.

In addition, the following issues were verified/solved during the workshop:

e compiler-side optimization, numerical correctness of results,

e I/0 and data distribution issues at start-up/termination,

e excluding possible “memory leaks” through open messages,

o adjustment of internal MPI buffer sizes (in particular: DCMF_RECFIFO).

The lessons learned from the workshop will be extremely valuable for the
purpose of increasing the parallel efficiency of our application (on BlueGene and

other systems), even if typical runs will be limited to 16K-32K cores in the near
future.

case #F#grid-nodes F#particles Fracks #cores exectime/step [s]

6 40963 131072 8 32768 119
7 40962 x 8192 262144 16 65536 152
8 4096 x 81922 524288 32 131072 195
9a 81923 1048576 64 262144 411
9b 81923 262144 64 262144 410

Table 1: Timing results (“weak” scaling), recorded for a time step with 15 full
multi-grid iteration steps performed over 3 Runge-Kutta sub-steps.

37

38

KKRnano: A Program for Large-Scale
Density-Functional Calculations

Rudolf Zeller, IAS-3, Forschungszentrum Jiilich
Alexander Thiess, GRS and IFF-1, Forschungszentrum Jiilich

Description of the Code

In the last two years we have developed a computer program for density-
functional electronic-structure calculations for nanosystems with thousands of
atoms. This work was motivated by two aims, to avoid the bottleneck of stan-
dard density-functional methods, where the computing time increases cubically
with the number of atoms, and to make efficient use of massively parallel su-
percomputers like the Blue Gene/P.

Our program is based on multiple-scattering theory within the Korringa-
Kohn-Rostoker (KKR) formulation. It avoids wavefunctions and directly cal-
culates the Kohn-Sham Green function by solving sparse systems of complex
linear equations of dimension N (I + 1)2. Here N is the number of atoms and [
depends on the angular spatial resolution around the atoms, usually | = 3 or 4
is sufficient. We solve these equations iteratively by the quasi-minimal residual
(QMR) method and calculate the electron density by integrating over an en-
ergy mesh with a few tenths of energy points. The main part of the computing
time is used in the QMR iterations. This time increases quadratically with N
and can be distributed naturally using one processor per atom with good weak
scaling efficiency.

Accomplished Objectives

In order to use much more processors than atoms, during the last months we
have introduced three additional levels of parallelization by using MPI groups
and communicators. One parallelization is over the energy points, which we put
into two or there groups to obtain reasonable load balancing despite considerable
variation in the number of QMR iterations. The other parallelizations are over
the two spin directions in magnetic systems and over the L = (I + 1) = 16
angular momentum components. The L parallelization is implemented presently
only for the QMR iterations, but not in other parts of the program because of
the substantial programming work involved.

It was the aim during the workshop to investigate the scaling behaviour of
parallelization over energy and L (parallelization over atoms and spin is trivially

39

N oo

36
number of racks

Figure 1: Speedup on Jugene for a system of 3072 atoms using 2, 4, 8 and 16
processors for the parallelization over the 16 L components. Triangles are for
the QMR iterations and diamonds for the time occupied by the partition.

rather efficient) and to see whether all 72 racks of the Blue Gene/P could be
used for two NiPd test systems with 3072 and 12288 atoms. The smaller system,
which required 350 Megabyte per processor, was run in VN mode using pure
MPI parallelization, whereas the larger system, which required 1600 Megabyte
per compute node, was run in SMP mode using OPENMP with four threads
for the L parallelization. For both systems all 72 racks with 294912 processors
could be used directly without problems.

For 12288 atoms we considered only the energy parallelization. With 72
racks compared to 24 racks the QMR time was reduced by a factor 2.3, whereas
disappointingly the partition time increased by 6 %. For 3072 atoms the speedup
obtained by energy parallelization using 9 instead of 3 racks was 2.8 for the QMR
time and 2.5 for the partition time. Here the L parallelization was advantageous
up to 72 racks for the QMR time, but only up to 36 racks for the partition
time (see figure). Disappointingly, the partition time on the full machine was
larger than for 9 racks. We used Scalasca to analyse the behaviour using 9
and 18 racks and found considerable time spent after the major calculations.
We removed some unnecessary output information (and communication) and
obtained a better, but still not satisfactory speedup for 72 racks, marked by the
upper diamond in the figure.

In conclusion, we gained confidence that our progam KKRnano is suitable
for more than 100000 processors. Scaling results and analysis performed by
Scalasca indicate where code changes could be done to improve performance.

40

