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Abstract:

We present a method for the parallelization of an immersed boundary algorithm for particulate
flows using the MPI standard of communication. The treatment of the fluid phase uses the domain
decomposition technique over a Cartesian processor grid. The solution of the Helmholtz problem
is approximately factorized and relies upon a parallel tri-diagonal solver; the Poisson problem is
solved by means of a parallel multi-grid technique similar to MUDPACK. For the solid phase we
employ a master-slaves technique where one processor handles all the particles contained in its
Eulerian fluid sub-domain and zero or more neighbor processors collaborate in the computation of
particle-related quantities whenever a particle position over-laps the boundary of a sub-domain.
The parallel efficiency for some preliminary computations is presented.

Simulación de Flujos con Part́ıculas en Ordenadores Parallélos con Memoria

Distribuida

Uhlmann, M. (CIEMAT)
32 pp. 12 figs. 9 refs.

Resumen:

Se propone un método para la computación paralela de un algoritmo de fronteras embebidas
para flujos con part́ıculas, utilizando el estandard de comunicación MPI. Se aplica la técnica de
domain decomposition a la fase fluida: factorización aproximada para los problemas de Helmholtz,
resolviendo las matrices tri-diagonales en paralelo; un esquema multi-grid paralelo para el problema
de Poisson. Se utiliza una técnica maestro-esclavo para la fase solida: un procesador trata las
part́ıculas que están localizadas dentro de su sub-dominio y cero o más procesadores vecinos
colaboran cuando la posición solapa la frontera de un sub-dominio. Se presenta la eficiencia
paralela en algunos cálculos preliminares.
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Chapter 1

Introduction

The study of particulate flow systems of scientific or engineering interest typically involves a large
number of solid particles and a wide range of scales of the flow field. The combination of both
factors means that feasible computations will be severely limited by current computing power. On
the other hand, every effort should be made towards an efficient use of the available resources.
This leads us immediately to the topic of parallel computing.

Virtually all of today’s super-computers are parallel machines. In many cases, the memory is
not shared but distributed across the processors or across various nodes of multi-processors. In
order to obtain a portable code, it is therefore quite desirable to design a program for distributed-
memory systems and, particularly, to resort to the widely available MPI standard of data com-
munication.

In this framework, i.e. distributed memory multi-processor machines, there are quite a few
open questions concerning the strategy to be employed for particle simulations. Most of them
are related to issues of load-balancing due to unequal distribution of particles across processors
as well as the communication overhead produced by shared processing of particles and hand-over
of particles between different processing units. In the present study we try to gather some first
experiences from the practical implementation of an algorithm for particulate flow simulation. We
do not pretend to solve the above mentioned questions optimally. Rather will we report our chosen
approach and the results concerning efficiency.

The algorithm which we consider pertains to two spatial dimensions and was previously detailed
in [1]. It could be argued that the parallelization of a 2D code is not very useful as such. This is
not necessarily true. Firstly, our results show that reasonable parallel efficiency can be obtained
for typical computations and employing somewhat “coarse-grained” parallelism. Furthermore,
this study should really be seen as a step towards three-dimensional computations. The latter will
definitely benefit from parallelism in a more significant way than the present ones. The conclusions
drawn from the present study should be widely valid in the 3D case which is not really much more
than a straightforward extension of the present case, albeit adding a much higher computational
cost.
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Chapter 2

Fluid phase parallelism

2.1 Basic projection method and spatial discretization

The fractional-step method used for advancing the incompressible Navier-Stokes equations in
time has been detailed in [1]; it shall be reproduced below for convenience. Using a semi-implicit
scheme for the viscous terms and a three-step, low-storage, self-restarting Runge-Kutta method
with explicit non-linear terms, the semi-discrete system can be written as follows:

u∗ − uk−1

∆t
= −2αk∇pk−1 + αkν∇2

(
u∗ + uk−1

)

−γk [(u · ∇)u]
k−1 − ζk [(u · ∇)u]

k−2
+ γkf

k + ζkf
k−1 (2.1a)

∇2φk =
∇ · u∗

2αk∆t
(2.1b)

uk = u∗ − 2αk∆t∇φk (2.1c)

pk = pk−1 + φk − αk∆t ν∇2φk (2.1d)

Here u is the fluid velocity vector, p the pressure divided by the fluid density and ν the kinematic
viscosity. The volume force f regroups the body forces arising from the solid-fluid coupling.
Furthermore, k = 1, 2, 3 is the Runge-Kutta step count (with the level k = 3 being equivalent to
n+1), u∗ the predicted, intermediate velocity and the intermediate variable φ is sometimes called
“pseudo-pressure”. The set of coefficients αk, γk, ζk leading to overall second-order temporal
accuracy for both velocity and pressure was given in [1].

A uniform staggered grid is defined and the equations are discretized in space by standard
central second-order finite-differences.

2.2 Parallel data structure

We distribute the fluid data defined on the fixed Eulerian grid over a Cartesian processor grid.
For this purpose we arrange the available processors in a two-dimensional array with nxprocs

columns and nyprocs rows such that their total number is given by the product nprocs =
nxprocs·nyprocs. Each processor is designated a rank myid from MPI with myid ∈ [0, nprocs-1].
Likewise, each processor carries a column- and a row-index, my col ∈ [0, nxprocs-1] and my row ∈
[0, nyprocs-1], respectively, which uniquely identifies its position within the processor grid.

The linear grid dimensions are then each distributed over the corresponding processor grid
dimensions. Let nx1 be a number of grid points in the first coordinate direction. Then the
following algorithm generates the pointers ibeg, iend which give the index range of nodes held
locally by each processor in a given column my col:

Require: nx1, my col, nxprocs
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n = int (nx1/nxprocs)
d = mod (nx1, nxprocs)
ibeg(my col) = my col · n + 1 + min(my col, d)
if my col < d then

n← n + 1
end if

iend(my col) = ibeg(my col) + n− 1
if my col = nxprocs− 1 || iend(my col) > nx1 then

iend(my col) = nx1

end if

It should be noted that the above algorithm leads to a distribution as even as possible (with a
difference of only one in the number of indices held by each processor). As an example, 25 data
are distributed to 4 processors as 7 : 6 : 6 : 6, whereas under the block distribution employed by
ScaLAPACK [2] we would get 7 : 7 : 7 : 4.

Due to the use of a staggered grid we have unequal global dimensions for the different variables:

u : (1 : nxu, 1 : nyu)
v : (1 : nxv, 1 : nyv)

p, φ : (1 : nxp, 1 : nyp)
(2.2)

with
nxu = nxp + 1, nyu = nyp, nxv = nxp, nyv = nyp + 1. (2.3)

Therefore, we need a total of 12 pointer arrays to local data (3 grid types, 2 spatial directions, 2
for start/end):

ibegu(0 : nxprocs− 1), ibegv(0 : nxprocs− 1), ibegp(0 : nxprocs− 1),
iendu(0 : nxprocs− 1), iendv(0 : nxprocs− 1), iendp(0 : nxprocs− 1),
jbegu(0 : nyprocs− 1), jbegv(0 : nyprocs− 1), jbegp(0 : nyprocs− 1),
jendu(0 : nyprocs− 1), iendv(0 : nyprocs− 1), jendp(0 : nyprocs− 1).

(2.4)

Finally, local arrays are dimensioned by adding one “ghost cell” at each extremity of the local
index range (cf. figure 2.1 for a schematic representation of the data distribution), e.g.

ulocal : (ibegu(my col)−1 : iendu(my col)+1, jbegu(my row)−1 : jendu(my row)+1), (2.5)

and analogously for the other variables. This single overlap of data is enough to evaluate all oper-
ators locally when central second-order finite-differences are used. The necessary communication
then consists in exchanging values of the “ghost cells” between neighbor processors at various
stages during the algorithm, particularly after any update (cf. § 2.6 below).

2.3 Communication of “ghost cell” data

The method of exchanging “ghost cell” data between neighbors of a Cartesian processor grid is
taken from reference [3] and shall be explained below.

First, a pointer array neighbor(1 : 8) is defined locally. It holds the ranks of the 8 neighbor
processors in a clock-wise numbering scheme as shown in figure 2.2. For processors which touch
the extremities of the processor grid, some (or all) of these ranks might be undefined (say: set
to a negative value) except when periodicity is specifically imposed, in which case they wrap-
around. Analogously, define a local array of flags ibd(1 : 8) which, when true, allow a processor
to communicate with the respective neighbor (when ibd(i) true, neighbor(i) needs to indicate a
valid rank). Hereby, boundary conditions like Dirichlet or Neumann (no communication) and
periodicity (communication) can be distinguished for “extreme” processors.

The data to be exchanged in order to fill one processor’s “ghost cells” is the following:

(i) one contiguous line each with neighbors 3,7
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Figure 2.1: Parallel data structure: Schematic of the decomposition of a two-dimensional Cartesian
spatial grid with dimension nx = 6, ny = 6 upon a two-dimensional Cartesian processor grid with
nxprocs = 2 and nyprocs = 2, i.e. 4 processors in total. Node points are indicated by 2 and
“ghost” points by ◦. The pointers my col and my row indicate the position of each processor
within the processor grid.
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7

Figure 2.2: Definition of neighbor processors in two-dimensional Cartesian processor grid.
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(ii) one non-contiguous column each with neighbors 5,1

(iii) one datum each with neighbors 2,4,6,8

The global data volume to be communicated at one instance of an exchange of “ghost cell”
data is the following:

DV = 2 {nxprocs · nyprocs (2SLR + 2STB + 4SC) (2.6)

−4 (SC + SLR + STB)−max(nxprocs− 2, 0) · 2STB −max(nyprocs− 2, 0) · 2SLR} ,

where

SLR = iend(my col)− ibeg(my col) + 1, STB = jend(my row)− jbeg(my row) + 1, SC = 1,
(2.7)

with iend etc. placeholders for the actual iendu etc. The second row in (2.6) is due to non-
periodicity at the boundaries of the domain. For a case which is fully periodic and where the
dimensions divide evenly by the number of processors we obtain:

DV = 4 (2 · nxprocs · nyprocs+ nxprocs · ny + nyprocs · nx) . (2.8)

Please note that the global factor of two in (2.8) reflects the send-and-receive character of the
exchange. The global number of messages to be exchanged is the following:

NM = 2 · nxprocs · nyprocs · 8 (2.9)

in the fully periodic (worst) case.
For each of the three operations (i)-(iii) appropriate data types can be defined by means

of calls to MPI TYPE CONTIGUOUS and MPI TYPE VECTOR, avoiding the need for temporary stor-
age. The following algorithm then performs a non-blocking exchange of the ghost-cell data:

Require: ibd, neighbor, iseq send, iseq recv

ireq=0
for ii = 1 : 8 do

idest = iseq send(ii)
if ibd(idest) then

ireq ← ireq + 1
rank dest = neighbor(idest)
call MPI ISEND(. . .,rank dest,. . .)

end if

iorig = iseq recv(ii)
if ibd(iorig) then

ireq ← ireq + 1
rank orig = neighbor(iorig)
call MPI IRECV(. . .,rank orig,. . .)

end if

end for

call MPI WAITALL(ireq,. . .)

Here the order of the exchange is determined through the following definition of sequences:

iseq send = {1, 3, 2, 4, 5, 7, 6, 8}, iseq recv = {5, 7, 6, 8, 1, 3, 2, 4}. (2.10)

The data types and the indices to the local array to be sent/received need to be adjusted in
correspondence with the above sequences. These details were omitted from the above algorithm.
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Figure 2.3: Two levels of refinement of the geometric multi-grid method with vertex-centered
arrangement. Note that the two extreme points are ghost-cells, i.e. the proper fine grid consists
of 22 + 1 nodes and the coarse one of 21 + 1 nodes.

2.4 Parallel Poisson solver: multi-grid

The inversion of the Poisson equation for pseudo-pressure (2.1b) was performed by means of
a direct method in the single-processor version of the present code. More specifically, a cyclic
reduction technique was used (cf. [1]). From a quick scan of the literature it seems that this type
of algorithm is difficult to parallelize efficiently [4]. Instead we opted for an iterative multi-grid
solution method for our present purpose. The desired accuracy of the solution (and consequently
the accuracy with which zero-divergence is imposed) can then be chosen as a compromise with
the numerical effort, as opposed to machine accuracy which is obtained by the direct method.

The present multi-grid variant is equivalent to the popular package MUDPACK [5], except that
it is implemented for distributed multi-processor machines by means of MPI. The set of routines
we use is actually based upon MGD [3]. The characteristics of the multi-grid algorithm can be
summarized as follows:

• full-weighted residuals for restriction from fine to coarse grid;

• area-weighting of residuals for injection from coarse to fine grid;

• Gauss-Seidel point relaxation with red-black ordering for smoothing of residuals;

• use of V-cycles.

The parallelism was kept “as is”, but the underlying solver was modified such as to allow for
Neumann boundary conditions imposed at the node-points. Therefore, the discretization was
changed to a vertex-centered arrangement as shown in figure 2.3. Since the pressure-nodes coincide
with the boundary Γ in our present staggered grid arrangement, we are now able to handle the
zero-gradient boundary condition for pseudo-pressure used for solving equation (2.1b).

When using this scheme, the global number of grid points for pressure is defined as follows:

nxp = ixp · 2(iex−1) + 1, (2.11a)

nyp = jyq · 2(jey−1) + 1, (2.11b)

and the dimensions for the two velocity components nxu,nyu, nxv, nyv follow from (2.3). The
exponents iex and jey should be maximized for a given problem since they determine how many
levels of the grid hierarchy are used in each direction and therefore directly influence the con-
vergence properties. On the other hand, the factors ixp and jyq must be chosen such that each
processor will have at least a single grid point in each coordinate direction at the finest grid level,
viz.

ixp ≥ nxprocs, jyq ≥ nyprocs. (2.12)
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It should be noted that load-balancing is somewhat compromised in our present version due to the
additional “singleton” dimension (i.e. the “+1” in equations 2.11). Thereby one processor always
holds an additional grid point.

The necessary communication for a solution of a Poisson problem can be summed up as follows.
Let us suppose for simplicity that nxp = nyp. The grid at refinement level k then has the size
ny(k) = nx(k) = ixp · 2k−1 + 1. One interchange of boundary data for the grid at level k consists
of the data volume and number of messages of § 2.3 (i.e. formulas 2.6, 2.9), but calculated for
the grid size nx(k), ny(k). Let us call these quantities DV (k) and NM (k). Inspecting the current
multi-grid algorithm we find for the total data volume (DMGD) and the total number of messages
to be sent (NMGD):

DMGD = nit

(
2∑

k=iex

5DV (k) + 2DV (1) +
iex∑

k=1

2DV (k)

)

, (2.13a)

NMGD = nit

(
2∑

k=iex

5NM (k) + 2NM(1) +
iex∑

k=1

2NM(k)

)

, (2.13b)

where nit refers to the number of iterations needed to achieve the desired residual. In our experi-
ence, this number was around 6.

The performance of the multi-grid method is shown in figure 4.1 in form of the parallel effi-
ciency:

E =
T1

p · Tp

, (2.14)

where Tn is the execution time on n processors. As can be expected, the efficiency decreases for
large numbers of processors at a given problem size.

2.5 Parallel Helmholtz solver: ADI

The Helmholtz problems for the predicted velocities (2.1a) could in principle be solved by a
technique very similar to the multi-grid method above. However, due to the staggered grid, the
required factorization of the dimensions (2.11) cannot be met simultaneously for the velocity
components and pressure. Furthermore, it is not necessary to solve the Helmholtz equations up to
very high accuracy due to the truncation error of the underlying scheme. Therefore, we opt for an
approximate factorization method which has the advantage to decouple the spatial dimensions and
further reduce the computational complexity. The present choice is a factorization with second
order temporal accuracy, thereby keeping the overall order of the numerical method. Details are
presented in appendix A.

In terms of parallelism, the present data structure implies that for an x (y) sweep, a row
(column) of processors solves tri-diagonal linear systems in parallel, independently of the other rows
(columns). More specifically, an x sweep means that each column of processors (i.e. the nxprocs

processors with the same value of my row) jointly solves a number of jbeg(my row) : jend(my row)
tri-diagonal systems in the x direction. Communication is only needed within the respective
column of processors. Therefore, MPI communicators for each column and each row are defined.

The task then is to parallelize the solution of a tri-diagonal linear system over a number of np
processors, where np will in reality either be nxprocs or nyprocs. We employ the algorithm of
Mattor et al. [6], which—in analogy with ordinary differential equations—splits up the problem
into a homogeneous and a particular one. The homogeneous problem can be precomputed and the
parallel over-head is restricted to the solution of a small algebraic system and a relatively limited
amount of communication. Details of the algorithm are given in appendix B.

Keeping in mind the communication count of the parallel tri-diagonal solver and considering
the structure of the factorization algorithm, the following data volume DADI and message count
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per processor NADI is obtained (using the notation of § 2.3):

DADI = SLR log2(nyprocs) + STB log2(nxprocs) , (2.15a)

NADI = 8SLR

log
2
(nyprocs)
∑

i=1

2i−1 + 8STB

log
2
(nxprocs)
∑

j=1

2j−1 . (2.15b)

The above numbers refer to one solution of a Helmholtz problem with the ADI method; the
algorithm (2.1) contains one such for each velocity component at each step.

The performance of the factorization method is shown in figure 4.2 in form of the parallel
efficiency.

2.6 Instances of communication

The following flowchart shows at which point of a fluid step communication occurs.

RHS1 = f(uk−1,uk−2, pk−1)

?

∇2u∗ + λu∗ = RHS1 � comm: ADI

�
�

�



?

comm: u∗

�
�

�



?

RHS2 = f(u∗)

?

∇2φk = RHS2 � comm: MGD

�
�

�



?

comm: φk

�
�

�



?

uk = f(u∗, φk) , pk = f(pk−1, φk)

?

comm: uk, pk

�
�

�



It can be seen that—besides the necessary communication during the solution of Helmholtz and
Poisson problems—there are two exchanges of boundary data for each velocity component and
two for pressure-size arrays (i.e. one for pseudo-pressure φk and one for the final pressure pk).

2.7 Validation

2.7.1 Lid-driven cavity flow

The lid-driven cavity has been used extensively for validation of flow solvers in the literature. The
flow develops inside a closed square cavity, Ω = [0, 1] × [0, 1], with the top boundary moving at
constant speed g(x) = 1, cf. figure 2.4. The boundary conditions are therefore:

u(0, y) = 0, u(1, y) = 0, u(x, 0) = 0, u(x, 1) = 1, v(x, 1) = 0, (2.16)

while the adequate condition for pseudo-pressure is homogeneous Neumann over the entire bound-
ary.

Figure 4.5 shows velocity profiles of our computations pertaining to a spatial grid with 513×513
pressure nodes. For this case, a cartesian processor grid with 4×4 processors was used. The steady
state was reached by convergence of the maximum norm of the residual below 10−7. The results
correspond well with results from Ghia et al. [7] at the present Reynolds number of Re = 400.

10



................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

..................
....

....

.....

.............

..................
....

u = 0

u = 0u = 0

v = 0, u = g(x)

x

y

Figure 2.4: Schematic of the lid-driven cavity configuration.

2.8 Performance

The performance of the full fluid step is shown in figure 4.6 in form of the parallel efficiency. If
we require a reasonable parallel efficiency of 50%, say, then with grids in the range of 512–2048,
the number of processors should be chosen as 4, i.e. nxprocs = nyprocs = 2.
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Chapter 3

Solid phase parallelism

Here we shall consider the parallelization of the immersed boundary method for the simulation of
solid particles “on top” of the parallelization of the fluid phase which was presented in chapter 2.
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3.1 Basic algorithm of the immersed boundary method

The full algorithm which needs to be re-implemented for multi-processor machines is the following
(cf. [1]):

X(d)(sl, p) = xk−1
c,p + rc,p

(

cos

(
2π(l − 1)

nL

+ θk−1
c,p

)

, sin

(
2π(l − 1)

nL

+ θk−1
c,p

))

(3.1a)

U(d)(sl, p) = uk−1
c,p + ωc,p ×

(

X(d)(sl, p)− xk−1
c,p

)

(3.1b)

Fk(sl, p) = κ
(

X(d)(sl, p)−Xk−1(sl, p)
)

+ 2γ
(

U(d)(sl, p)−Uk−1(sl, p)
)

, (3.1c)

fk(x) =
∑

p

∑

l

Fk(sl, p) δh

(
x−Xk−1(sl, p)

)
∆s , (3.1d)

u∗ − uk−1

∆t
= αkν∇2(uk−1 + u∗)− 2αk∇pk−1

−γk [(u · ∇)u]
k−1 − ζk [(u · ∇)u]

k−2
+ γkf

k + ζkf
k−1 , (3.1e)

∇2φk =
∇ · u∗

2αk∆t
, (3.1f)

uk = u∗ − 2αk∆t∇φk , (3.1g)

pk = pk−1 + φk − αk∆t ν∇2φk , (3.1h)

Uk(sl, p) =
∑

i,j

uk(xi,j) δh

(
xi,j −Xk−1(sl, p)

)
∆x∆y , (3.1i)

Xk(sl, p) = Xk−1(sl, p) + αk∆t
(
Uk(sl, p) + Uk−1(sl, p)

)
, (3.1j)

uk
c,p − uk−1

c,p

∆t
=

ρf

Vc,p(ρc,p − ρf )

(

−γk

∫

S

fk dV k−1 − ζk

∫

S

fk−1 dV k−2

)

+ 2αkg , (3.1k)

xk
c,p − xk−1

c,p

∆t
= αk

(
uk

c,p + uk−1
c,p

)
. (3.1l)

ω
k
c,p − ω

k−1
c,p

∆t
=

ρf

Ic,p

(

−γk

∫

S

(rk−1 × fk) dV k−1 − ζk

∫

S

(rk−2 × fk−1) dV k−2

+

(∫

S

(
rk−1 × uk

)
dV k−1

)
−
(∫

S

(
rk−2 × uk−1

)
dV k−2

)

∆t

)

. (3.1m)

θ
k
c,p − θ

k−1
c,p

∆t
= αk

(
ω

k
c,p + ω

k−1
c,p

)
. (3.1n)

The additional nomenclature is as follows: X(sl, p) are the Lagrangian marker points of the pth
particle, sl the discrete coordinate on the pth solid-fluid interface with 1 ≤ l ≤ nL; X(d)(sl, p) are
the desired Lagrange marker locations; Fk(sl, p) is the singular boundary force at the lth Lagrange
location of the pth particle at Runge-Kutta sub-step k; similarly for Uk(sl, p), U(d)(sl, p) which
are the Lagrange velocities and desired velocities; κ and γ are the stiffness and damping constants
of the virtual forces connecting actual Lagrange marker positions and desired positions; xk

c,p, uk
c,p,

θk
c,p, ωk

c,p, ρc,p, rc,p are the center position, linear velocity, angular position, angular velocity,
density and radius, respectively, of the pth particle.

Steps (3.1e)–(3.1h) have already been dealt with in chapter 2.

3.2 Master-and-slaves strategy

Keeping in mind the domain decomposition method employed for the fluid parallelization (cf.
§ 2.2) it is most reasonable to have a given processor deal with those particles which are currently
located within its local sub-domain. There are two catches to this strategy: (i) particles will in
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general be non-evenly distributed over the sub-domains, leading to problems of load-balancing;
(ii) particles will naturally cross borders between sub-domains causing a variety of complications
such as the necessity to hand-over the control to other processors and the over-lapping of particles
between adjacent sub-domains. Since particle-related computations will need to be shared amongst
multiple processors in some instances, we will adopt a master-and-slaves strategy. This means that
at any time there will be one processor responsible for the general handling of each particle (that
particle’s “master”) and there will be a number of additional processors which help the master
in dealing with the specific particle (the “slaves” of that particle’s master). The number of slave
processors associated with each particle changes in time and can be any integer, including zero.

3.2.1 Accounting for particles

Accounting for local particles and association with their global numbering is done by defining a
local list of pointers which will be called indcloc(1 : nclmx). For a given local index i, indcloc(i)
gives the corresponding global identification (icg, say): if the value of indcloc(i) is positive, then the
present processor is the master for this particle; if the value is negative, the present processor is one
of the slaves for this particle; if the value is zero, the slot i is free, i.e. there is currently no particle
assigned to this location. The global numbering runs in ascending order as 1 ≤ icg ≤ ncobj.

The cooperation between master and slave processors is accounted for in a logical (bit) array
lcoop(1 : 8, 1 : nclmx). Let us consider a particle with local index i. If the current processor is this
particle’s master, then lcoop(j, i) determines whether the local neighbor j (cf. figure 2.2) acts as a
slave or not; in the case where the processor is itself a slave for particle i, then exactly one bit out
of lcoop(1 : 8, i) is set to “true” and its index indicates which neighbor is the responsible master.

3.2.2 Determination of the master processor

For a particle with given center position xc,i(t) we define as the master processor the one whose
sub-domain includes the point under consideration. The sub-domain is defined as the union of the
cells surrounding all pressure nodes held locally, i.e. the rectangular area limited by the four lines:

x = xu(ibegp(my col)) ,
x = xu(iendp(my col) + 1) ,
y = yv(jbegp(my row)) ,
y = yv(jendp(my row) + 1) .

(3.2)

Presently, it is supposed that the temporal resolution of the process is sufficient such that a
particle’s position can advance at most from one sub-domain to an adjacent one within one time-
step. Therefore, we can simplify the determination of the successor to the present master in such
a case by only checking the boundaries of the nearest neighbors.

3.2.3 Determination of the slave processors

In order to determine which processors need to contribute to a given particle’s balances, we need
to consider the various steps of the algorithm (3.1). Shared computations will only be those where
Eulerian quantities are involved, fields being distributed as outlined in § 2.2. Therefore, the shared
operations are the spreading of the Lagrangian forces (3.1d) and the interpolation of the Eulerian
velocities (3.1i). Both operations involve essentially the same loops with the same index ranges,
determined by the width of the support of the regularized delta function. What we need to do
in order to find out if a particle with a given position and radius can be handled alone by its
master is to compute the extreme indices swept over by the loops corresponding to (3.1d) and
(3.1i) and compare them to the index range held by the master. This check needs to be done for
both velocity components (staggered grid).

In the case where the loops exceed the local range, the corresponding neighbors are added
to the local list of slaves for the particle in question (i.e. the cooperation bits in lcoop are set
accordingly) and data is prepared for communication (cf. § 3.2.5 below). Here we suppose that
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the particles are of such a dimension that they will not need cooperation beyond the nearest 8
neighbors, i.e. roughly that the radius is smaller than the linear dimension of a sub-domain.

3.2.4 Old master/new master communication

The data to be passed from the current master to its successor in the case of a particle leaving
the present master’s sub-domain is the following:

• particle-related quantities uk
c,p, xk

c,p, ωk
c,p, θk

c,p, rc,p, ρc,p, i.e. 8 real data per particle;

• particle-related integral quantities
∫

S
fk dV k−1

∫

S
(rk−1× fk) dV k−1,

∫

S

(
rk−1 × uk

)
dV k−1,

i.e. 4 real data per particle;

• Lagrange-marker-related quantities Uk(sl, p), Xk(sl, p), Fk(sl, p), i.e. 6nL real data per par-
ticle.

The communication itself is carried out in two phases. The first consists of a mandatory exchange
of a single integer between each processor and all of its 8 neighbors. The datum to be exchanged
evidently is the number of particles having recently crossed from the local sub-domain to the
respective neighbors sub-domain, say nsend(1 : 8). The data in this phase is exchanged by the
scheme of § 2.3 with the data type being MPI INTEGER. The result is stored in nrecv(1 : 8).

The second phase is the exchange of the actual data, carried out only for those processor pairs
where communication occurs. Therefore, a slightly modified variant of the algorithm of § 2.3
applies here. Supposing that the data to be exchanged was previously assembled by the current
master in the buffer outbuf then the following scheme is used:

Require: ibd, neighbor, iseq send, iseq recv, outbuf
ireq=0
for ii = 1 : 8 do

idest = iseq send(ii)
if ibd(idest) & nsend(idest) > 0 then

ireq ← ireq + 1
rank dest = neighbor(idest)
call MPI ISEND(outbuf(1, idest),. . .,rank dest,. . .)

end if

iorig = iseq recv(ii)
if ibd(iorig) & nrecv(iorig) > 0 then

ireq ← ireq + 1
rank orig = neighbor(iorig)
call MPI IRECV(inbuf(1, iorig),. . .,rank orig,. . .)

end if

end for

call MPI WAITALL(ireq,. . .)

The sequence of destinations/origins is the same as given in § 2.3.

3.2.5 Master/slaves communication

3.2.5.1 Initialization as slaves

After each update of the particle positions the slaves are completely re-determined and data is
transmitted anew from the master to all contributing slaves of a given particle. The data volume
consists in the following:

• Particle-related quantities uk
c,p, xk

c,p, ωk
c,p, θk

c,p, rc,p, i.e. 7 real data per particle.

• Lagrange-marker-related quantities Uk(sl, p), Xk(sl, p), Fk(sl, p), i.e. 6nL real data per par-
ticle.
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• For reasons of accounting, we also transmit the local (to the master) index of the particle
in question. This measure helps us to avoid the need for “double bookkeeping” of particle
indices or a search through the local index list when the inverse communication is carried
out subsequently (i.e. slave-to-master, cf. § 3.2.5.2).

Again, there are two phases of communication, the first being the exchange of the number of data
packages to be exchanged between each pair of neighbors. After this step, each processors holds
the arrays of counters nsend(1 : 8) and nrecv(1 : 8). These counters are preserved through the
following time-step for subsequent utilization during shared operations (cf. § 3.2.5.2 below). The
second phase is similar to the second phase described in § 3.2.4, except that the data volume per
particle is slightly inferior here.

3.2.5.2 Shared computation of interpolation step and integrals

Here we will discuss how the operation

Uk(sl, p) =
∑

i,j

uk(xi,j) δh

(
xi,j −Xk−1(sl, p)

)
∆x∆y , (3.3)

is carried out following the domain decomposition technique of the fluid and our master-slaves
strategy for the particles. Firstly, we suppose that both master and slaves hold all of the
Lagrangian marker-point positions Xk−1(sl, p). Then, let both master and slaves accumulate
Ũk(sl, p) as far as their local index range of the Euler field u allows. The desired result is simply
the sum of Ũk(sl, p) over all slaves and the master. Therefore, the master needs to perform a gath-
ering operation of type on the intermediate result Ũk(sl, p). Furthermore, this communication is
exactly the inverse of the initial exchange between master and slaves (§ 3.2.5.1) with respect to
the number of packages of data, i.e. here a master receives nsend(i) from the neighbor i and a
slave needs to send nrecv(i) packages to the neighbor i. The volume of each package is evidently
nL. The unpacking operation of the data received by the master involves a summation.

Similarly, the computation of the volume integral of the angular momentum within a parti-
cle domain

∫

S

(
rk−1 × uk

)
dV k−1 is carried out in a shared fashion with the same procedure of

gathering by the master. The data volume is simply one real per particle and per slave.
It should be noted that the volume integrals over the singular force/torque can be carried out

without communication since it is equal to the sum over the force at the Lagrangian marker points.

3.2.6 Information flow: who is holding what at what stage?

The flowchart in table 3.1 gives an overview of the flow of information between the various pro-
cessors involved in the computation of quantities pertaining to a given particle. It can be seen
that all the necessary particle-center-related information is passed on to slave processors during
the reassignment step such that each processor can (redundantly) compute the Lagrangian forces
Fk in local memory. Further communication is then only necessary during the Euler-to-Lagrange
step (3.1i) and for the gathering of the results from integrations.

3.3 Performance

3.3.1 Intensity of communication due to particles

Let the total number of particles leaving their master’s sub-domain at a given step be nL. Analo-
gously, let nO be the global sum (over all particles) of the number of slaves per particle. Inspecting
the whole algorithm we find that the total data volume to be sent/received between processors
due to the presence of particles is:

GV = 16
︸︷︷︸

integers

+ nO · (13 + 7 nL) + nL · (13 + 6 nL)
︸ ︷︷ ︸

reals

. (3.4)
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result arguments equation who executes? M holds S holds comm

X(d) xk−1
c , rc, θk−1

c 3.1a M & S (redundant) all all —

U(d) uk−1
c , xk−1

c , ωk−1
c , X(d) 3.1b M & S (redundant) all all —

Fk X(d), Xk−1, U(d), Uk−1 3.1c M & S (redundant) all all —

fk Fk 3.1d M & S (partially) all all —

fk−1 Fk−1 3.1d M & S (partially) all all —

uk fk,fk−1 fluid step

Uk uk 3.1i M & S (partially) local uk local uk ×

Xk Xk−1, Uk, Uk−1 3.1j M all — —

uk
c , xk

c , ωk
c , θk

c

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

uk−1
c , xk−1

c , ωk−1
c , θk−1

c ,

ρc, rc

∫

S
fk dV k−1,

∫

S
fk−1 dV k−2,

∫

S
(rk−1 × fk) dV k−1,

∫

S
(rk−2 × fk−1) dV k−2,

∫

S

(
rk−1 × uk

)
dV k−1,

∫

S

(
rk−2 × uk−1

)
dV k−2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

3.1l

M;

integral over r× u:

M & S partially

all F, uc, xc, ωc, θc

local u

local u ×

re-assignment step: old master/new master & master/slaves initialization ×

T
a
b
le

3
.1

:
S
ch

em
a
tic

fl
ow

ch
a
rt

o
f
th

e
p
resen

t
p
a
ra

llel
im

m
ersed

b
o
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n
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a
lg

o
rith

m
.

T
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e
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“
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”
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d

“
S
”

refer
to

m
a
ster
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n
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slav
e
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ro

cesso
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w
.r.t.

a
g
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en
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Please note that it is more convenient to express the data volume globally here whereas it was local

to each processor in previous counts (cf. § 2.3, 2.4, 2.5).
The number of messages to be sent per processor is not constant, but depends as well upon

the positions of the particles. It is bounded as follows:

16 ≤ NSOLID ≤ 48 . (3.5)

The constant part stems from mandatory preliminary messages which determine the size of the
actual data to be exchanged between each processor pair. The upper limit of 48 is obtained when
a given processor needs to exchange slave and master data with all its eight direct neighbors.

3.3.2 Parallel efficiency

We compute a case where 48 particles are settling under the action of gravity in a closed ambient
container. Each particle is represented by nL = 30 Lagrangian marker points. Two Eulerian grids
were considered: nxp = nyp = 512 (i.e. ixp = jyq = 4, iex = jey = 8) and nxp = nyp = 2048
(i.e. ixp = jyq = 16, iex = jey = 8). Therefore, both Eulerian grids allow for the same number
of multi-grid levels. The distribution of the particles is un-balanced between processors, but the
un-balancing was not maintained while the number of active processors was changed.

The parallel efficiency for this flow case is given in the figure 4.7. The accounting was done
for a single time step only; it does change in time due to the varying distribution of the particles.
The present numbers are however instructive and can be taken as a rough guide.

It is somewhat surprising to see an efficiency of over 80% with nxprocs = nyprocs = 2 in the
case of the smaller grid whereas for the larger grid the efficiency is at only 50%. We believe that
this effect is due to the above mentioned difference in the distribution of the particles. For the
larger processor count of nxprocs = nyprocs = 4 we obtain the expected result that the parallel
efficiency for the smaller grid has dropped to unacceptable 10% while the larger grid can still be
computed at an efficiency of nearly 40%.
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Chapter 4

Conclusions

We have described a method of parallelization of a particulate flow code of the immersed boundary
type for execution on distributed memory machines. The parallelization of the fluid part of the
algorithm employs standard domain decomposition techniques for Cartesian grids. The solutions
of the linear systems stemming from the discretization of the Helmholtz and Poisson problems are
obtained by means of an approximate factorization method and a multi-grid technique respectively.
The kernel of the former scheme is a tri-diagonal solver for executing the one-dimensional sweeps in
parallel, parallelized over one of the Cartesian processor grid dimensions. The multi-grid method
uses the same parallelization as the basic domain decomposition technique, but applied to all grid
refinement levels.

The parallelization of the solid part was implemented through a master-slaves technique. The
processor whose sub-domain includes a particle’s center point is designated the master for the par-
ticle. The master carries out the computations associated with the Lagrangian marker points and
those due to the Newtonian particle tracking as far as possible, i.e. as much as the extension of its
Eulerian sub-domain allows. When a particle overlaps several sub-domains, i.e. when its balances
cannot be carried out by its master from local memory any more, the respective neighbor proces-
sors are designated as slave processors, contributing to the computation. Limited communication
between masters and slaves is necessary at three points during the algorithm.

Preliminary computations of fluid-particle systems of low dimensionality demonstrate the fea-
sibility of the current approach in terms of the parallel efficiency. This quantity is, however,
somewhat difficult to define reliably in the context of freely-moving particles due to time-varying
load distribution between processors. Therefore, future computations should provide long-time
statistics of the parallel efficiency for various configurations, system sizes and resolutions.
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Figure 4.1: Parallel efficiency E = TP /(P · T1) of the parallel multi-grid algorithm executed
with P processors on an SGI ORIGIN 3800. The two curves correspond to problem sizes of
nxp = nyp = 512 ( ) and nxp = nyp = 2048 ( ).
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Figure 4.2: Parallel efficiency E = TP /(P · T1) of the parallel approximate factorization step
executed with P processors on an SGI ORIGIN 3800. The two curves correspond to problem sizes
of nxp = nyp = 512 ( ) and nxp = nyp = 2048 ( ).
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Figure 4.3: Contour lines of the streamfunction for the case of the lid-driven cavity at Re = 400.
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Figure 4.4: Contour lines of the x-component of velocity (top) and of the y-component of velocity
(bottom) for the case of the lid-driven cavity at Re = 400. The solid lines correspond to positive
values, the dashed lines to negative values.
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Figure 4.5: Profiles of the x-component of velocity along the y-direction (top) and of the y-
component of velocity along the x-direction (bottom) for the case of the lid-driven cavity at
Re = 400. The solid lines correspond to the present results obtained with 513×513 pressure node
points; the symbols are taken from reference [7].
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Figure 4.6: Parallel efficiency E = TP /(P · T1) of a full step of the parallel fluid solver executed
with P processors on an SGI ORIGIN 3800. The two curves correspond to problem sizes of
nxp = nyp = 512 ( ) and nxp = nyp = 2048 ( ).
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Figure 4.7: Parallel efficiency E = TP /(P · T1) of a full step of the parallel fluid & solid solver
executed with P processors on an SGI ORIGIN 3800. Here, nxprocs = nyprocs =

√
P . The two

curves correspond to problem sizes of nxp = nyp = 512 ( ) and nxp = nyp = 2048 ( ).
In both cases, 48 particles with nL = 30 Lagrange markers each were assigned and unequally
distributed over the processors.
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Appendix A

Approximate factorization method

The predictor step for velocity (2.1a) can be rewritten as

u∗

i − uk−1
i = C(Sx + Sy)

(
u∗

i + uk−1
i

)
+ Fi (A.1)

for convenience, defining:

C = ναk∆t (A.2a)

Sx = ∂xx (A.2b)

Sy = ∂yy (A.2c)

Fi = ∆t
{

−γk (ujui,j)
k−1 − ζk (ujui,j)

k−2 − 2αkpk−1
,i + γkfk

i + ζkfk−1
i

}

. (A.2d)

The following factorization of equation (A.1) is carried out (cf. [8, p.440]):

(1− CSx) (1− CSy)u∗

i = (1 + CSx) (1 + CSy)uk−1
i + Fi , (A.3)

which is equivalent to the original equation up to O(∆t3). The splitting of the factorized scheme
into two separate one-dimensional steps is done according to the method of D’Yakonov (cf. [9,
p.61]):

(1− CSx)u′

i = (1 + CSy) (1 + CSx)uk−1
i + Fi , (A.4a)

(1− CSy)u∗

i = u′

i . (A.4b)

The intermediate solution u′
i does not have a physical meaning and is later discarded. However, one

needs to apply consistent boundary conditions to the first sweep in order to obtain the expected
solution after the second sweep. This value is simply given by the second formula, i.e. at the
boundary we need to impose the following:

(u′

i)L,R = (1− CSy) (u∗

i )L,R , (A.5)

where ()L,R refers to values at the left and right boundary of the computational domain. Therefore,
the adequate boundary condition at the extrema of the first sweep is obtained by a combination
of the operator along those boundaries applied to the desired boundary conditions u∗

i which is
available in the case of Dirichlet boundary conditions and a grid which is centered w.r.t. the
physical boundary. The conclusion for a staggered grid is that one needs to perform first a sweep
in the non-staggered direction and subsequently in the staggered one, i.e. for the x-velocity sweep
first in y then in x and vice versa for the y-velocity. In the case of a homogeneous Neumann
condition, it should be chosen to lie along the staggered boundary (i.e. for the x-velocity: the
lines x = cst). This means that we are presently neither capable to simulate two perpendicular
Neumann conditions for a single velocity component nor Neumann conditions for both components
at a single boundary. Fortunately, the present cases of interest do not fall into either class.
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Appendix B

Parallel tri-diagonal solver

Let us consider the linear algebraic system

Λx = r , (B.1)

where Λ is a tri-diagonal matrix of size N ×N . We suppose that there are P processors available
and, for simplicity, N = MP with M integer.

The algorithm of Mattor et al. [6] essentially solves the following three reduced systems—local
to each processor p—instead:

Lp xr
p = rp, (B.2a)

Lp xUH
p = bUH

p , (B.2b)

Lp xLH
p = bLH

p , (B.2c)

for the vectors xr
p, xUH

p , xLH
p . According to the analogy with inhomogeneous differential equa-

tions, these vectors correspond to the “particular”, the “upper homogeneous” and the “lower
homogeneous” solutions. Lp is a reduced system matrix, rp the reduced right-hand-side vector
and bUH

p , bLH
p are vectors with coupling terms which depend only upon the members of the origi-

nal matrix Λ. Therefore, the “homogeneous” solutions xUH
p , xLH

p can be pre-computed during an
initialization phase, if the matrix Λ is going to be constant during the various solution steps to be
carried out afterwards, i.e. in our terms, if the time step is going to be constant. One “particular”
solution of (B.2a) by LU factorization takes 5M operations per processor.

The final solution x is assembled as follows:

x = xr
p + ξUH

p xUH
p + ξLH

p xLH
p , (B.3)

which takes 4M operations per processor. The scalar factors ξUH
p , ξLH

p are the solution of a tri-
diagonal linear system where the right-hand-side is a function of the reduced “particular” vectors
xr

p. Therefore, it needs communication before its assembly: there are log2(P ) communication

steps, the ith one sending a data volume of 8 · 2i−1 real numbers. The solution of (B.3) itself—
which is redundantly executed by each processor—requires 8(2P − 2) operations.

The parallel efficiency of this algorithm is shown in figure B.1.

31



E

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

P

Figure B.1: Parallel efficiency E = TP /(P · T1) of the parallel tri-diagonal matrix algorithm
executed with P processors on an SGI ORIGIN 3800. The two curves correspond to problem sizes
of N = 512 ( ) and N = 50000 ( ).
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