Journal articles
[1] M. Schenk, M. García-Villalba, J. Dusek, M. Uhlmann, and M. Moriche. An immersed boundary method for particle-resolved simulations of arbitrary-shaped rigid particles. Int. J. Multiphase Flow, 188:105200, 2025. [ bib | DOI | arXiv ]
[2] M. García-Villalba, B. Fuentes, J. Dušek, M. Moriche, and M. Uhlmann. An efficient method for particle-resolved simulations of neutrally buoyant spheres. Computers & Fluids, 263:105936, 2023. [ bib | DOI | arXiv ]
[3] M. Moriche, D. Hettmann, M. García-Villalba, and M. Uhlmann. On the clustering of low-aspect-ratio oblate spheroids settling in ambient fluid. J. Fluid Mech., 963:A1, 2023. [ bib | DOI | arXiv ]
[4] A.G. Kidanemariam, M. Scherer, and M. Uhlmann. Open channel flow over evolving subaqueous ripples. J. Fluid Mech., 937:A26, 2022. [ bib | DOI ]
[5] M. Pinelli, H. Herlina, J. Wissink, and M. Uhlmann. Direct numerical simulation of turbulent mass transfer at the surface of an open channel flow. J. Fluid Mech., 933:A49, 2022. [ bib | DOI ]
[6] M. Scherer, M. Uhlmann, A.G. Kidanemariam, and M. Krayer. On the role of turbulent streaks in generating sediment ridges. J. Fluid Mech., 930:A11, 2022. [ bib | DOI | arXiv ]
[7] M. Krayer, A. Chouippe, M. Uhlmann, J. Dušek, and T. Leisner. On the ice-nucleating potential of warm hydrometeors in mixed-phase clouds. Atmos. Chem. Phys., 21:561--575, 2021. [ bib | DOI | arXiv ]
[8] M. Moriche, M. Uhlmann, and J. Dušek. A single oblate spheroid settling in unbounded ambient fluid: a benchmark for simulations in steady and unsteady wake regimes. Int. J. Multiphase Flow, 1346:103519, 2021. [ bib | DOI | arXiv ]
[9] M. Scherer, A.G. Kidanemariam, and M. Uhlmann. On the scaling of the instability of a flat sediment bed with respect to ripple-like patterns. J. Fluid Mech., 900:A1, 2020. [ bib | DOI | arXiv ]
[10] M. Uhlmann. Voronoï tessellation analysis of sets of randomly placed finite-size spheres. Physica A, 555:124618, 2020. [ bib | DOI | arXiv ]
[11] T. Pestana, M. Uhlmann, and G. Kawahara. Can preferential concentration of finite-size particles in plane Couette turbulence be reproduced with the aid of equilibrium solutions? Phys. Rev. Fluids, 5:034305, 2020. [ bib | DOI | arXiv ]
[12] M. Mazzuoli, P. Blondeaux, G. Vittori, M. Uhlmann, J. Simeonov, and J. Calantoni. Sediment transport under sea waves in the intermittently turbulent regime. J. Fluid Mech., 885:A28, 2020. [ bib | DOI ]
[13] A. Chouippe, M. Krayer, M. Uhlmann, J. Dušek, A. Kiselev, and T. Leisner. Heat and water vapor transfer in the wake of a falling ice sphere and its implication for secondary ice formation in clouds. New J. Phys., 21(4):043043, 2019. [ bib | DOI | arXiv ]
[14] M. Mazzuoli, A.G. Kidanemariam, and M. Uhlmann. Direct numerical simulations of ripples in an oscillatory flow. J. Fluid Mech., 863:572--600, 2019. [ bib | DOI | arXiv ]
[15] A. Chouippe and M. Uhlmann. On the influence of forced homogeneous-isotropic turbulence on the settling and clustering of finite-size particles. Acta Mechanica, 230:387--412, 2019. [ bib | DOI | arXiv ]
[16] G. Arranz, A. Gonzalo, M. Uhlmann, O. Flores, and M. García-Villalba. A numerical study of the flow around a model winged seed in auto-rotation. Flow, Turbulence and Combustion, 101(2):477--497, 2018. [ bib | DOI ]
[17] G. Arranz, M. Moriche, M. Uhlmann, O. Flores, and M. García-Villalba. Kinematics and dynamics of the auto-rotation of a model winged seed. Bioinspiration & Biomimetics, 13(3):036011, 2018. [ bib | DOI ]
[18] J. Wissink, H. Herlina, Y. Akar, and M. Uhlmann. Effect of surface contamination on interfacial mass transfer rate. J. Fluid Mech., 830:5--34, 2017. [ bib | DOI ]
[19] M. Mazzuoli and M. Uhlmann. Direct numerical simulation of open-channel flow over a fully-rough wall at moderate relative submergence. J. Fluid Mech., 824:722--765, 2017. [ bib | DOI | arXiv ]
[20] A.G. Kidanemariam and M. Uhlmann. Formation of sediment patterns in channel flow: minimal unstable systems and their temporal evolution. J. Fluid Mech., 818:716--743, 2017. [ bib | DOI | arXiv ]
[21] M. Uhlmann and A. Chouippe. Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence. J. Fluid Mech., 812:991--1023, 2017. [ bib | DOI | arXiv ]
[22] S.G. Huisman, T. Barois, M. Bourgoin, A. Chouippe, T. Doychev, P. Huck, C.E. Bello Morales, M. Uhlmann, and R. Volk. Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid. Phys. Rev. Fluids, 1(7):074204, 2016. [ bib | DOI | arXiv ]
[23] M. Mazzuoli, A.G. Kidanemariam, P. Blondeaux, G. Vittori, and M. Uhlmann. On the formation of sediment chains in an oscillatory boundary layer. J. Fluid Mech., 789:461--480, 2016. [ bib | DOI ]
[24] A. Chouippe and M. Uhlmann. Forcing homogeneous turbulence in DNS of particulate flow with interface resolution and gravity. Phys. Fluids, 27(12):123301, 2015. [ bib | DOI | arXiv ]
[25] K. Takeishi, G. Kawahara, H. Wakabayashi, M. Uhlmann, and A. Pinelli. Localized turbulence structures in transitional rectangular-duct flow. J. Fluid Mech., 782:368--379, 2015. [ bib | DOI ]
[26] M. Obligado, N. Machicoane, A. Chouippe, R. Volk, M. Uhlmann, and M. Bourgoin. Path instability on a sphere towed at constant speed. J. Fluid. Struct., 2015. [ bib | DOI ]
[27] A.G. Kidanemariam and M. Uhlmann. Interface-resolved direct numerical simulations of the erosion of a granular bed sheared by laminar channel flow. Int. J. Multiphase Flow, 67:174--188, 2014. [ bib | DOI | arXiv ]
[28] M. Uhlmann and T. Doychev. Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech., 752:310--348, 2014. [ bib | DOI | arXiv ]
[29] A.G. Kidanemariam and M. Uhlmann. Direct numerical simulation of pattern formation in subaqueous sediment. J. Fluid Mech., 750:R2, 2014. [ bib | DOI | arXiv ]
[30] M. Uhlmann and J. Dušek. The motion of a single heavy sphere in ambient fluid: a benchmark for interface-resolved particulate flow simulations with significant relative velocities. Int. J. Multiphase Flow, 59:221--243, 2014. [ bib | DOI | arXiv ]
[31] C. Chan-Braun, M. García-Villalba, and M. Uhlmann. Spatial and temporal scales of force and torque acting on wall-mounted spherical particles in open channel flow. Phys. Fluids, 25(7):075103, 2013. [ bib | DOI | arXiv ]
[32] A.G. Kidanemariam, C. Chan-Braun, T. Doychev, and M. Uhlmann. Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys., 15(2):025031, 2013. [ bib | DOI | arXiv ]
[33] M. García-Villalba, A.G. Kidanemariam, and M. Uhlmann. DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging. Int. J. Multiphase Flow, 46:54--74, 2012. [ bib | DOI | arXiv ]
[34] G. Kawahara, M. Uhlmann, and L. van Veen. The significance of simple invariant solutions in turbulent flows. Ann. Rev. Fluid Mech., 44:203--225, 2012. [ bib | DOI | arXiv ]
[35] C. Chan-Braun, M. García-Villalba, and M. Uhlmann. Force and torque acting on particles in a transitionally rough open channel flow. J. Fluid Mech., 684:441--474, 2011. [ bib | DOI | arXiv ]
[36] A. Sekimoto, G. Kawahara, K. Sekiyama, M. Uhlmann, and A. Pinelli. Turbulence- and buoyancy-driven secondary flow in a horizontal square duct heated from below. Phys. Fluids, 23(7):075103, 2011. [ bib | DOI ]
[37] M. Uhlmann, G. Kawahara, and A. Pinelli. Travelling-waves consistent with turbulence-driven secondary flow in a square duct. Phys. Fluids, 22(8):084102, 2010. [ bib | DOI ]
[38] A. Pinelli, M. Uhlmann, A. Sekimoto, and G. Kawahara. Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech., 644:107--122, 2010. [ bib | DOI ]
[39] A. Pinelli, M. Uhlmann, A. Sekimoto, and G. Kawahara. Reynolds number dependence of mean flow structure in square duct turbulence - CORRIGENDUM. J. Fluid Mech., 653:537--537, 2010. [ bib | DOI ]
[40] M. Uhlmann. Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids, 20(5):053305, 2008. [ bib | DOI ]
[41] M. Uhlmann, A. Pinelli, G. Kawahara, and A. Sekimoto. Marginally turbulent flow in a square duct. J. Fluid Mech., 588:153--162, 2007. [ bib | DOI ]
[42] M. Uhlmann and M. Nagata. Linear stability analysis of flow in an internally heated rectangular duct. J. Fluid Mech., 551:387--404, 2006. [ bib | DOI ]
[43] M. Uhlmann. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys., 209(2):448--476, 2005. [ bib | DOI | arXiv ]
[44] J. Fröhlich and M. Uhlmann. Orthonormal polynomial wavelets on the interval and applications to the analysis of turbulent flow fields. SIAM J. Appl. Math., 63(5):1789--1830, 2003. [ bib | DOI ]
[45] G. Kawahara, J. Jiménez, M. Uhlmann, and A. Pinelli. Linear instability of a corrugated vortex sheet---a model for streak instability. J. Fluid Mech., 483:315--342, 2003. [ bib | DOI ]
[46] C. Berthon, F. Coquel, J.-M. Hérard, and M. Uhlmann. An approximate solution of the Riemann problem for a realisable second-moment closure. Shock Waves, 11(4):245--269, 2002. [ bib | DOI ]
[47] J. Jiménez, M. Uhlmann, A. Pinelli, and G. Kawahara. Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech., 442:89--117, 2001. [ bib | DOI ]
[48] G. Kawahara, J. Jiménez, M. Uhlmann, and A. Pinelli. The instability of streaks and the generation mechanism of streamwise vorticity in near-wall turbulence. Trans. Jap. Soc. Mech. Eng. B (in Japanese), 66(642):383--391, 2000. [ bib ]
[49] G. Brun, J.-M. Hérard, D. Jeandel, and M. Uhlmann. An approximate Roe-type Riemann solver for a class of realizable second order closures. Int. J. Comp. Fluid Dynamics, 13(3):223--250, 2000. [ bib | DOI ]
[50] G. Brun, J.-M. Hérard, D. Jeandel, and M. Uhlmann. An approximate Riemann solver for second-moment closures. J. Comput. Phys., 151(2):990--996, 1999. [ bib | DOI ]

This file was generated by bibtex2html 1.99.