Turbulenzmodelle in der Strömungsmechanik Turbulent flows and their modelling

Markus Uhlmann

Institut für Hydromechanik

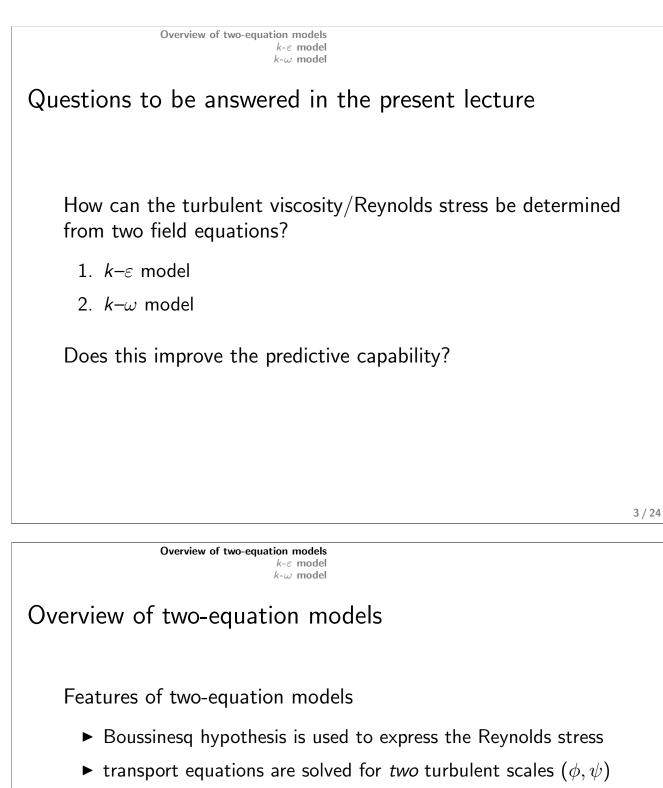
www.ifh.uni-karlsruhe.de/people/uhlmann

WS 2008/2009

Overview of two-equation models $\begin{array}{c} k\text{-}\varepsilon \mbox{ model} \\ k\text{-}\omega \mbox{ model} \end{array}$

LECTURE 9

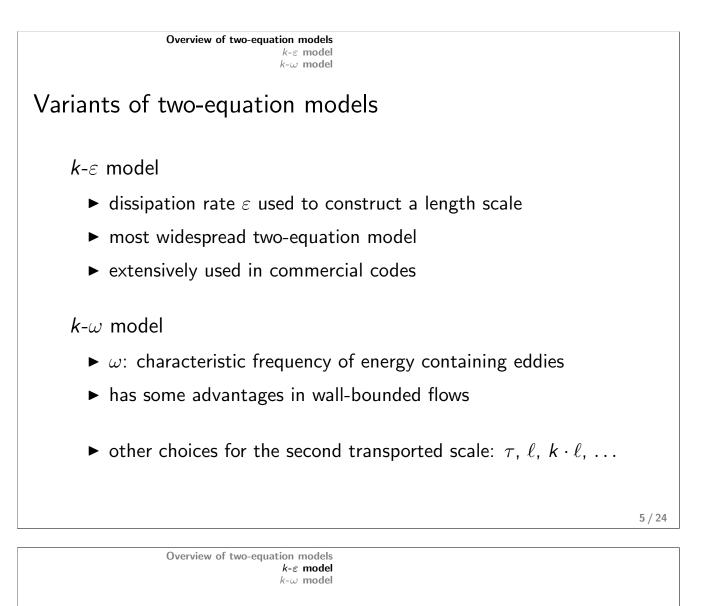
 $k-\varepsilon$ and other eddy viscosity models



• turbulent viscosity is constructed from these scales:

$$\nu_T \sim \phi^{\mathbf{n}} \cdot \psi^{\mathbf{m}}$$

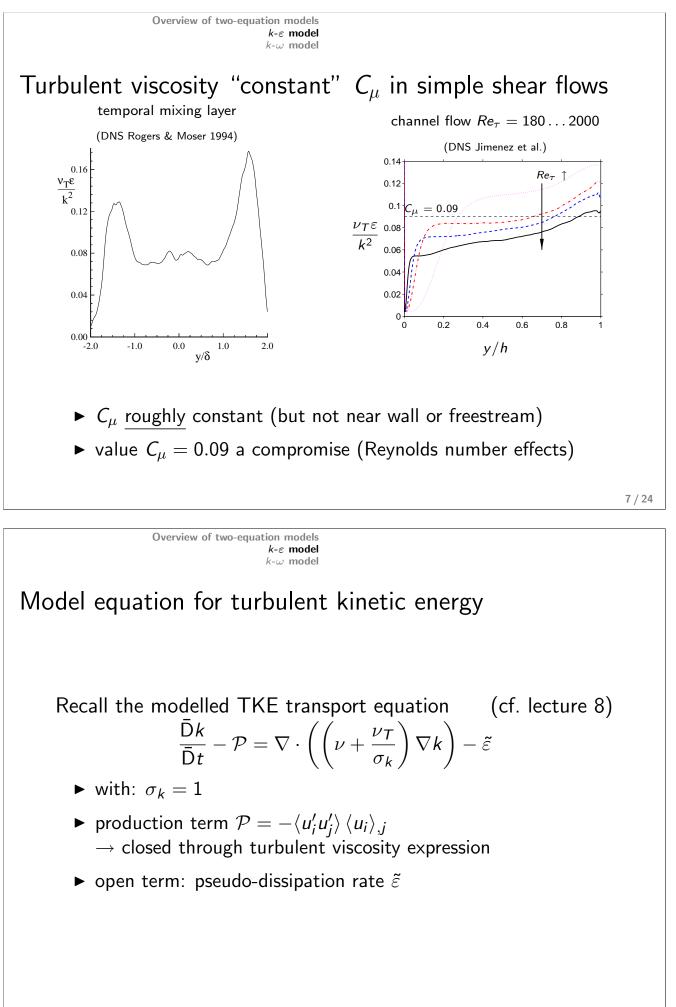
- ▶ powers *m*, *n* from dimensional consistency
- specification of case-dependent length scale not necessary
- \Rightarrow should provide greater universality



Ingredients of the k- ε model

- 1. the Boussinesq hypothesis: $\langle u'_i u'_i \rangle = -2\nu_T \bar{S}_{ij} + \frac{2}{3}k \,\delta_{ij}$
- 2. the expression for the turbulent viscosity: with a constant $C_{\mu}=0.09$
- 3. the transport equation for k (cf. lecture 8)
- 4. the transport equation for the dissipation rate ε
- 5. initial & boundary conditions
- 6. (unfortunately) additional modifications ...
- $\rightarrow\,$ the main task is to model the ε equation

 $u_T = C_\mu k^2 / \varepsilon$

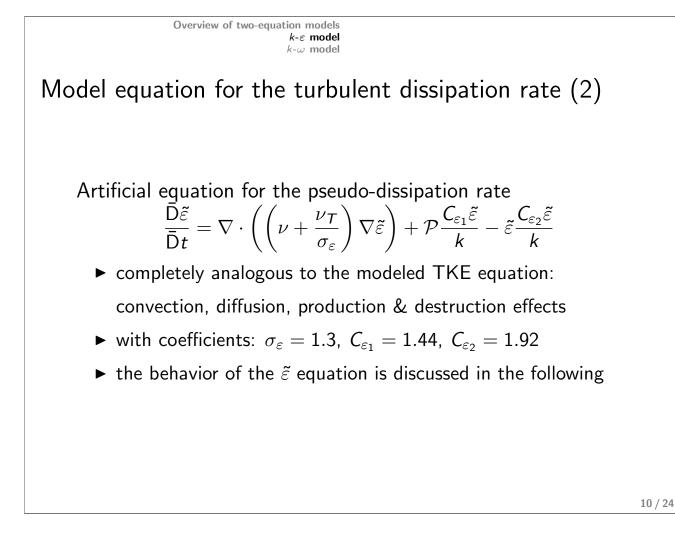


Model equation for the turbulent dissipation rate

$$\begin{split} \frac{\bar{\mathrm{D}}\tilde{\varepsilon}}{\bar{\mathrm{D}}t} &= -2\nu\left(\langle u_{i,k}' u_{j,k}' \rangle + \langle u_{k,i}' u_{k,j}' \rangle\right) \langle u_i \rangle_{,j} - 2\nu \langle u_k' u_{i,j}' \rangle \langle u_i \rangle_{,kj} \\ &- 2\nu \langle u_{i,k}' u_{i,m}' u_{i,m}' \rangle - 2\nu^2 \langle u_{i,km}' u_{i,km}' \rangle \\ &+ \left(\nu\tilde{\varepsilon}_{,j} - \nu \langle u_j' u_{i,m}' u_{k,m}' \rangle - 2\frac{\nu}{\rho} \langle u_{j,m}' p_{,m}' \rangle\right)_{,j} \end{split}$$

Exact equation for the pseudo-dissipation rate

- ► an exact equation can be derived from Navier-Stokes
- \rightsquigarrow modeling term-by-term is considered unfeasible
- \Rightarrow use an entirely modeled equation instead!



Model predictions in idealized flows

Model equations in homogeneous flow

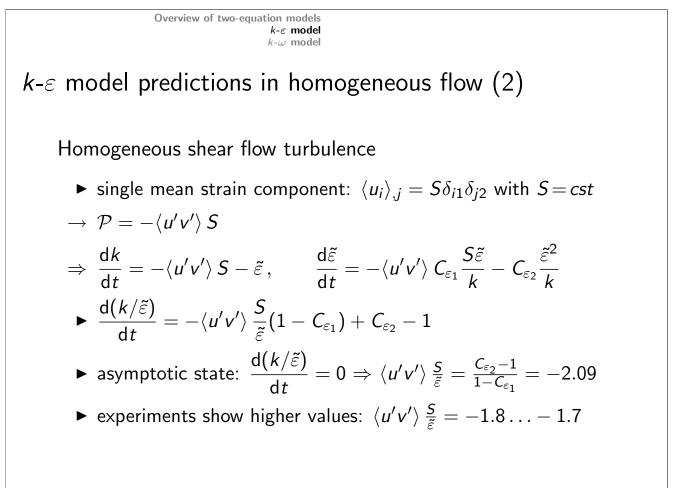
$dk - \mathcal{D}$ \tilde{c}	d $\widetilde{arepsilon}$ _	${}_{\mathcal{D}} C_{\varepsilon_1} ilde{arepsilon}$	$C_{arepsilon_2} ilde{arepsilon}^2$
$\frac{1}{\mathrm{d}t} = P - \varepsilon$,	$\frac{dt}{dt}$	/ <u>k</u>	k

The case of decaying turbulence

► no mean strain $\rightarrow \mathcal{P} = 0$ $\Rightarrow \frac{\mathrm{d}k}{\mathrm{d}t} + \tilde{\varepsilon} = 0, \qquad \frac{\mathrm{d}\tilde{\varepsilon}}{\mathrm{d}t} + \frac{C_{\varepsilon_2}\tilde{\varepsilon}^2}{k} = 0$

- ► solution: $k(t) = k_0(t/t_0)^{-n}$, $\tilde{\varepsilon}(t) = \tilde{\varepsilon}_0(t/t_0)^{-(n+1)}$ with: $n = 1/(C_{\varepsilon_2} - 1)$
- experiments show: $n \approx 1.3 \Rightarrow C_{\varepsilon_2} = 1.77$
- slightly lower than standard k- ϵ model value ($C_{\epsilon_2} = 1.92$)

11 / 24



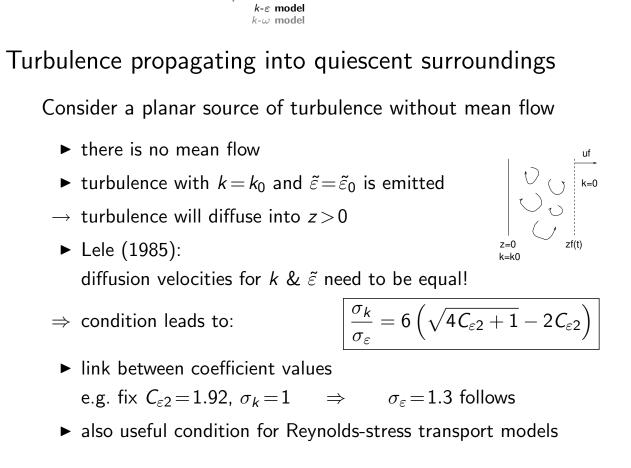
Dissipation equation in the logarithmic region

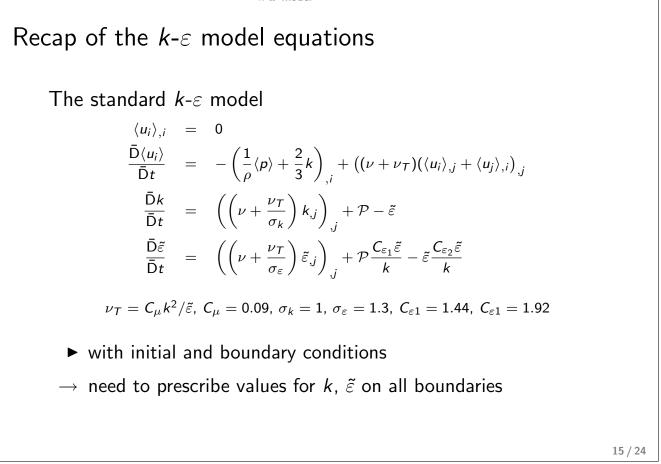
Consider fully developed channel flow (high Reynolds number)

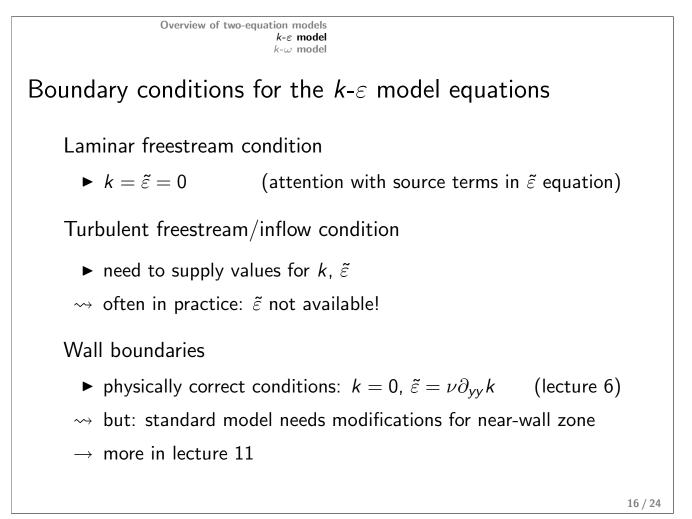
$$0 = \frac{\mathrm{d}}{\mathrm{d}y} \left(\left(\psi + \frac{\nu_T}{\sigma_k} \right) \frac{\mathrm{d}k}{\mathrm{d}y} \right) + \mathcal{P} - \tilde{\varepsilon}, \quad 0 = \frac{\mathrm{d}}{\mathrm{d}y} \left(\left(\psi + \frac{\nu_T}{\sigma_\varepsilon} \right) \frac{\mathrm{d}\tilde{\varepsilon}}{\mathrm{d}y} \right) + \mathcal{P} \frac{C_{\varepsilon_1}\tilde{\varepsilon}}{k} - \frac{C_{\varepsilon_2}\tilde{\varepsilon}^2}{k}$$

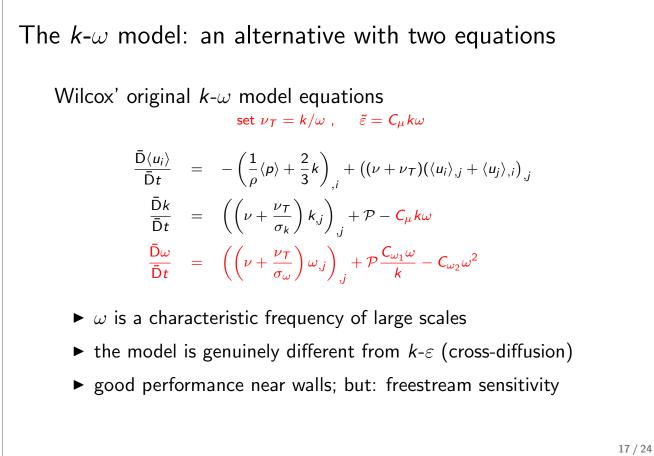
- consider the log-region, where: $u^+ = \log(y^+)/\kappa + B$
- experiments show: $\mathcal{P} \approx \tilde{\varepsilon}$, and: $\langle u'v' \rangle \approx -u_{\tau}^2$
- with Boussinesq hypothesis, and the fact: $\mathcal{P} = -\langle u'v' \rangle \langle u' \rangle_{,y}$
- $\Rightarrow \text{ it follows from } \tilde{\varepsilon}\text{-equation: } \boxed{\kappa^2 = \sigma_{\varepsilon}\sqrt{C_{\mu}}\left(C_{\varepsilon_2} C_{\varepsilon_1}\right)}$
- \rightarrow standard coefficient values yield: $\kappa = 0.43$ (compared to experimental value: $\kappa = 0.41$)

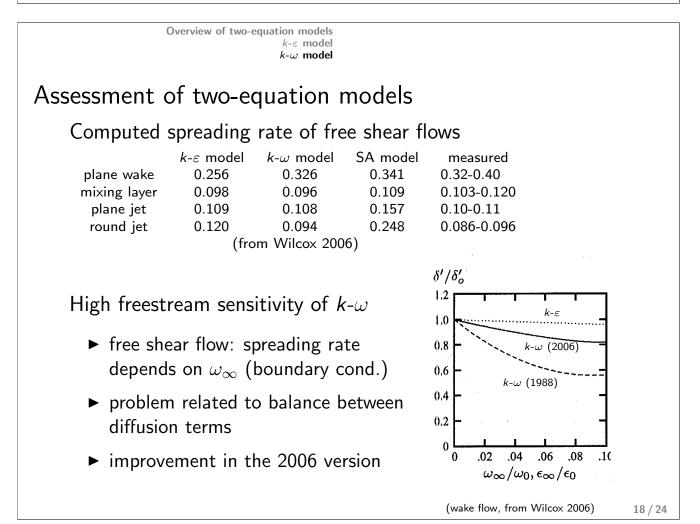
Overview of two-equation models

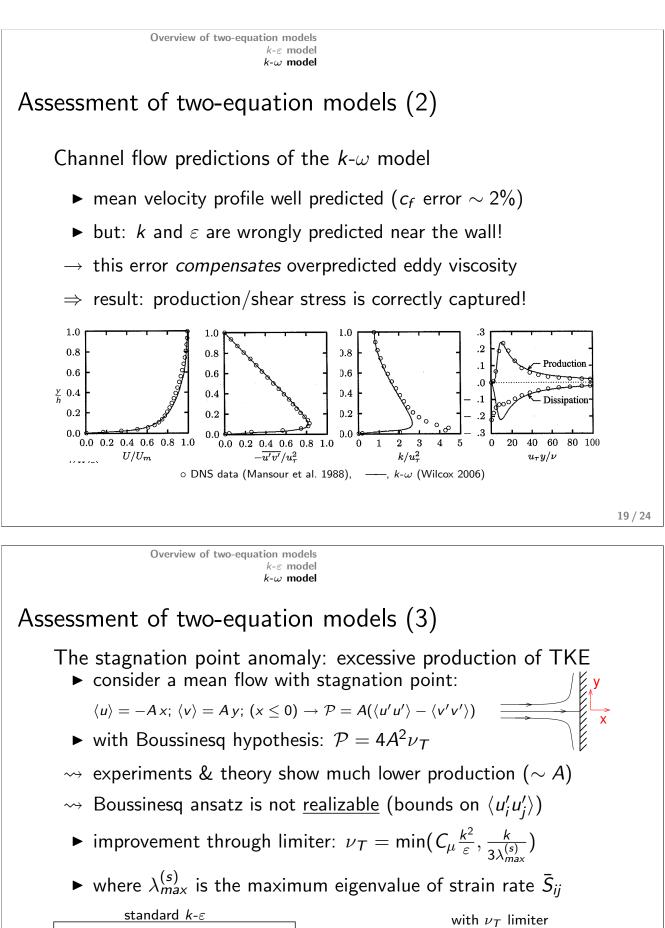












|--|

k contours in flow around airfoil (from Durbin & Petterson Reif, 2001)

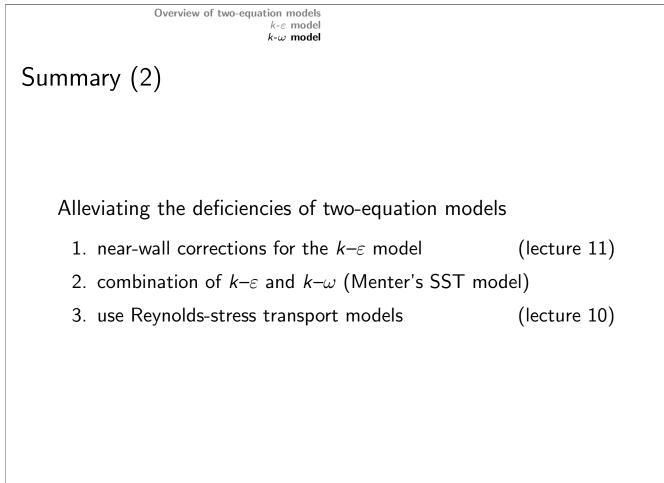
Summary

 $k-\varepsilon$ model

- ► TKE equation as in one-equation models
- length scale constructed from dissipation rate
- \blacktriangleright transport equation for $\tilde{\varepsilon}$ difficult to model \rightarrow artificial equation
- \rightsquigarrow standard k- ε model is not directly applicable to wall flows

 $k-\omega$ model

- alternative way of determining the second scale $(\nu_t = \frac{k}{\omega})$
- ► yields good results in wall-bounded flows
- \rightsquigarrow model is sensitive to freestream values



Outlook on next lecture: Reynolds-stress transport models

How can the equations be closed at the second-moment level?

- ▶ why resort to Reynolds-stress models?
- how to derive the $\langle u'_i u'_i \rangle$ transport equation?
- how to model the principal unknown terms?

How do Reynolds-stress models perform?

