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LECTURE 9

k–ε and other eddy viscosity models

2 / 24



Overview of two-equation models
k-ε model
k-ω model

Questions to be answered in the present lecture

How can the turbulent viscosity/Reynolds stress be determined
from two field equations?

1. k–ε model

2. k–ω model

Does this improve the predictive capability?
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Overview of two-equation models

Features of two-equation models

I Boussinesq hypothesis is used to express the Reynolds stress

I transport equations are solved for two turbulent scales (φ, ψ)

I turbulent viscosity is constructed from these scales:
νT ∼ φn · ψm

I powers m, n from dimensional consistency

I specification of case-dependent length scale not necessary

⇒ should provide greater universality
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Variants of two-equation models

k-ε model

I dissipation rate ε used to construct a length scale

I most widespread two-equation model

I extensively used in commercial codes

k-ω model

I ω: characteristic frequency of energy containing eddies

I has some advantages in wall-bounded flows

I other choices for the second transported scale: τ , `, k · `, . . .
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Ingredients of the k-ε model

1. the Boussinesq hypothesis: 〈u′iu′j〉 = −2νT S̄ij + 2
3
k δij

2. the expression for the turbulent viscosity: νT = Cµk2/ε
with a constant Cµ = 0.09

3. the transport equation for k (cf. lecture 8)

4. the transport equation for the dissipation rate ε

5. initial & boundary conditions

6. (unfortunately) additional modifications . . .

→ the main task is to model the ε equation
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Turbulent viscosity “constant” Cµ in simple shear flows
temporal mixing layer

(DNS Rogers & Moser 1994)

CHAPTER 10: TURBULENT-VISCOSITY MODELS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000
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Figure 10.4: Profile of νTε/k
2 (see Eq. 10.39) from DNS of the temporal

mixing layer (from data of Rogers and Moser 1994).
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I Cµ roughly constant (but not near wall or freestream)

I value Cµ = 0.09 a compromise (Reynolds number effects)
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Model equation for turbulent kinetic energy

Recall the modelled TKE transport equation (cf. lecture 8)
D̄k

D̄t
− P = ∇ ·

((
ν +

νT

σk

)
∇k

)
− ε̃

I with: σk = 1

I production term P = −〈u′iu′j〉 〈ui 〉,j
→ closed through turbulent viscosity expression

I open term: pseudo-dissipation rate ε̃
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Model equation for the turbulent dissipation rate

D̄ε̃

D̄t
= −2ν

(〈u′i ,ku′j ,k〉+ 〈u′k,iu′k,j〉
) 〈ui 〉,j − 2ν〈u′ku′i ,j〉〈ui 〉,kj

−2ν〈u′i ,ku′i ,mu′i ,m〉 − 2ν2〈u′i ,kmu′i ,km〉

+

(
νε̃,j − ν〈u′ju′i ,mu′k,m〉 − 2

ν

ρ
〈u′j ,mp′,m〉

)
,j

Exact equation for the pseudo-dissipation rate

I an exact equation can be derived from Navier-Stokes

 modeling term-by-term is considered unfeasible

⇒ use an entirely modeled equation instead!
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Model equation for the turbulent dissipation rate (2)

Artificial equation for the pseudo-dissipation rate
D̄ε̃

D̄t
= ∇ ·

((
ν +

νT

σε

)
∇ε̃
)

+ P Cε1 ε̃

k
− ε̃Cε2 ε̃

k

I completely analogous to the modeled TKE equation:

convection, diffusion, production & destruction effects

I with coefficients: σε = 1.3, Cε1 = 1.44, Cε2 = 1.92

I the behavior of the ε̃ equation is discussed in the following
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Model predictions in idealized flows

Model equations in homogeneous flow

dk

dt
= P − ε̃ , dε̃

dt
= P Cε1 ε̃

k
− Cε2 ε̃

2

k

The case of decaying turbulence

I no mean strain → P = 0

⇒ dk

dt
+ ε̃ = 0 ,

dε̃

dt
+

Cε2 ε̃
2

k
= 0

I solution: k(t) = k0(t/t0)−n, ε̃(t) = ε̃0(t/t0)−(n+1)

with: n = 1/(Cε2 − 1)

I experiments show: n ≈ 1.3 ⇒ Cε2 = 1.77

I slightly lower than standard k-ε model value (Cε2 = 1.92)
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k-ε model predictions in homogeneous flow (2)

Homogeneous shear flow turbulence

I single mean strain component: 〈ui 〉,j = Sδi1δj2 with S =cst

→ P = −〈u′v ′〉 S

⇒ dk

dt
= −〈u′v ′〉 S − ε̃ , dε̃

dt
= −〈u′v ′〉Cε1

S ε̃

k
− Cε2

ε̃2

k

I d(k/ε̃)

dt
= −〈u′v ′〉 S

ε̃
(1− Cε1) + Cε2 − 1

I asymptotic state:
d(k/ε̃)

dt
= 0 ⇒ 〈u′v ′〉 S

ε̃ =
Cε2−1
1−Cε1

= −2.09

I experiments show higher values: 〈u′v ′〉 S
ε̃ = −1.8 . . .− 1.7
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Dissipation equation in the logarithmic region

Consider fully developed channel flow (high Reynolds number)

0 =
d

dy

„„
�ν +

νT

σk

«
dk

dy

«
+ P − ε̃ , 0 =

d

dy

„„
�ν +

νT

σε

«
dε̃

dy

«
+ P Cε1 ε̃

k
− Cε2 ε̃

2

k

I consider the log-region, where: u+ = log(y +)/κ+ B

I experiments show: P ≈ ε̃, and: 〈u′v ′〉 ≈ −u2
τ

I with Boussinesq hypothesis, and the fact: P = −〈u′v ′〉〈u′〉,y
⇒ it follows from ε̃-equation: κ2 = σε

√
Cµ (Cε2 − Cε1)

→ standard coefficient values yield: κ = 0.43

(compared to experimental value: κ = 0.41)
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Turbulence propagating into quiescent surroundings

Consider a planar source of turbulence without mean flow

I there is no mean flow

I turbulence with k =k0 and ε̃= ε̃0 is emitted

→ turbulence will diffuse into z>0

I Lele (1985):

diffusion velocities for k & ε̃ need to be equal!

z=0 zf(t)

uf

k=0

k=k0

⇒ condition leads to:
σk

σε
= 6

(√
4Cε2 + 1− 2Cε2

)
I link between coefficient values

e.g. fix Cε2 =1.92, σk =1 ⇒ σε=1.3 follows

I also useful condition for Reynolds-stress transport models
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Recap of the k-ε model equations

The standard k-ε model

〈ui 〉,i = 0

D̄〈ui 〉
D̄t

= −
„

1

ρ
〈p〉+

2

3
k

«
,i

+
`
(ν + νT )(〈ui 〉,j + 〈uj 〉,i

´
,j

D̄k

D̄t
=

„„
ν +

νT

σk

«
k,j

«
,j

+ P − ε̃

D̄ε̃

D̄t
=

„„
ν +

νT

σε

«
ε̃,j

«
,j

+ P Cε1 ε̃

k
− ε̃Cε2 ε̃

k

νT = Cµk2/ε̃, Cµ = 0.09, σk = 1, σε = 1.3, Cε1 = 1.44, Cε1 = 1.92

I with initial and boundary conditions

→ need to prescribe values for k , ε̃ on all boundaries
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Boundary conditions for the k-ε model equations

Laminar freestream condition

I k = ε̃ = 0 (attention with source terms in ε̃ equation)

Turbulent freestream/inflow condition

I need to supply values for k , ε̃

 often in practice: ε̃ not available!

Wall boundaries

I physically correct conditions: k = 0, ε̃ = ν∂yy k (lecture 6)

 but: standard model needs modifications for near-wall zone

→ more in lecture 11
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The k-ω model: an alternative with two equations

Wilcox’ original k-ω model equations
set νT = k/ω , ε̃ = Cµkω

D̄〈ui 〉
D̄t

= −
„

1

ρ
〈p〉+

2

3
k

«
,i

+
`
(ν + νT )(〈ui 〉,j + 〈uj 〉,i

´
,j

D̄k

D̄t
=

„„
ν +

νT

σk

«
k,j

«
,j

+ P − Cµkω

D̄ω

D̄t
=

„„
ν +

νT

σω

«
ω,j

«
,j

+ P Cω1ω

k
− Cω2ω

2

I ω is a characteristic frequency of large scales

I the model is genuinely different from k-ε (cross-diffusion)

I good performance near walls; but: freestream sensitivity
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Assessment of two-equation models

Computed spreading rate of free shear flows
k-ε model k-ω model SA model measured

plane wake 0.256 0.326 0.341 0.32-0.40
mixing layer 0.098 0.096 0.109 0.103-0.120

plane jet 0.109 0.108 0.157 0.10-0.11
round jet 0.120 0.094 0.248 0.086-0.096

(from Wilcox 2006)

High freestream sensitivity of k-ω

I free shear flow: spreading rate
depends on ω∞ (boundary cond.)

I problem related to balance between
diffusion terms

I improvement in the 2006 version

k-ε

k-ω (2006)

k-ω (1988)

(wake flow, from Wilcox 2006) 18 / 24
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Assessment of two-equation models (2)

Channel flow predictions of the k-ω model

I mean velocity profile well predicted (cf error ∼ 2%)

I but: k and ε are wrongly predicted near the wall!

→ this error compensates overpredicted eddy viscosity

⇒ result: production/shear stress is correctly captured!

y
h

◦ DNS data (Mansour et al. 1988), ——, k-ω (Wilcox 2006)

19 / 24

Overview of two-equation models
k-ε model
k-ω model

Assessment of two-equation models (3)

The stagnation point anomaly: excessive production of TKE
I consider a mean flow with stagnation point:

〈u〉 = −Ax ; 〈v〉 = Ay ; (x ≤ 0) → P = A(〈u′u′〉 − 〈v ′v ′〉)
I with Boussinesq hypothesis: P = 4A2νT

x

y

 experiments & theory show much lower production (∼ A)

 Boussinesq ansatz is not realizable (bounds on 〈u′iu′j〉)
I improvement through limiter: νT = min(Cµ

k2

ε ,
k

3λ
(s)
max

)

I where λ
(s)
max is the maximum eigenvalue of strain rate S̄ij

standard k-ε with νT limiter

k contours in flow around airfoil (from Durbin & Petterson Reif, 2001)
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Summary

k–ε model

I TKE equation as in one-equation models

I length scale constructed from dissipation rate

I transport equation for ε̃ difficult to model→ artificial equation

 standard k–ε model is not directly applicable to wall flows

k–ω model

I alternative way of determining the second scale (νt = k
ω )

I yields good results in wall-bounded flows

 model is sensitive to freestream values
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Summary (2)

Alleviating the deficiencies of two-equation models

1. near-wall corrections for the k–ε model (lecture 11)

2. combination of k–ε and k–ω (Menter’s SST model)

3. use Reynolds-stress transport models (lecture 10)
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Outlook on next lecture: Reynolds-stress transport models

How can the equations be closed at the second-moment level?

I why resort to Reynolds-stress models?

I how to derive the 〈u′iu′j〉 transport equation?

I how to model the principal unknown terms?

How do Reynolds-stress models perform?
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Further reading

I S. Pope, Turbulent flows, 2000
→ chapter 10

I P.A. Durbin and B.A. Pettersson Reif, Statistical theory and
modeling for turbulent flows, 2003
→ chapter 6

I D.C. Wilcox, Turbulence modeling for CFD, 2006
→ chapter 2, 3 & 4
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