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Summary of last lecture

Lecture 6 – Wall-bounded shear flows

I What is the general structure of wall-bounded flows?
I inner layer/outer layer: linear/log-law, defect law

I How does the presence of a solid boundary affect the
turbulent motion?

I stronger anisotropy than free shear flows

I wall has selective effect on velocity components

I What is the effect of wall roughness?
I shift of the log-law compared to smooth walls
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Solution to last week’s problem

Determine the variation with wall-distance of the production P in
fully-developed plane channel flow, valid for very small values of y .

Result:

P(y) = O(y 3)

for y/h� 1

P
u3
τ/δν

DNS by Jimenez et al., Reτ = 950
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LECTURE 7

DNS as numerical experiments
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Questions to be answered in the present lecture

What are the possibilities & limitations of numerical
simulations of the full Navier-Stokes equations?

Part I I what is DNS?

I why perform DNS?

I what is the history of DNS?

I what are the computational requirements?

I how to treat the boundary conditions?

Part II I DNS results for coherent structure dynamics in wall flows
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Numerical requirements

Definition of “direct numerical simulation”

Solve the Navier-Stokes equations for turbulent flow,
resolving all relevant temporal and spatial scales.

I for incompressible fluid solve:

∂tu + (u · ∇) u +
1

ρ
∇p = ν∇2u

∇ · u = 0

with suitable initial & boundary conditions.
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Spectral view: DNS versus LES
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I DNS resolves spatial scales down to Kolmogorov scale η
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Physical space view: DNS versus RANS

Example: channel flow

instantaneous DNS data (u′)

→ flow direction

⇒

DNS statistics
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I DNS needs to be integrated in time to obtain statistics

I 〈ui 〉, 〈u′iu′j〉 are variables in RANS computation
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Objectives of DNS studies

(Today) DNS is a research method, not an engineering tool.

I computational effort:

→ today not feasible to perform DNS for practical application

I main purpose of DNS:

→ development of turbulence theory

⇒ improvement of simplified models
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1. DNS as “precise experiment” or “perfect measurement”

If we can simulate the flow with high-fidelity:

I full 3D, time-dependent flow field is available

I virtually any desired quantity can be computed
(e.g. pressure fluctuations, pressure-deformation tensor)

I there are no limitations by measurement sensitivity
(e.g. size of probes near a wall)

 analysis only limited by mind of researcher
(it is important to ask the right questions)

⇒ DNS complements existing laboratory experiments

10 / 39



Introduction to DNS
DNS of wall-bounded flow

Conclusion

Purpose of DNS
History of DNS
Numerical requirements

2. DNS as “virtual experiment”

When experiments are too costly/impossible to realize:

I numerical simulations provide great flexibility

I idealizations can be realized with ease:

I e.g. homogeneous-isotropic flow conditions

I periodicity

I absence of gravitational force

I . . .

⇒ DNS replaces laboratory experiments
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3. DNS as “non-natural experiment”

When non-physical configurations need to be simulated:

I we have the possibility to modify the equations

I we can apply arbitrary constraints

I examples from the past are:

I filtering (damping) turbulence in some part of the domain

I suppress individual terms in the equations

I applying artificial boundary conditions

I . . .

⇒ DNS directly serves turbulence theory
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Historical development of DNS

1972 first ever DNS of hom.-iso. turbulence by Orszag & Patterson

1981 homogeneous shear flow by Rogallo

1987 plane channel flow by Kim, Moin & Moser

1986-88 flat-plate boundary layer by Spalart

1990-95 homogeneous compressible flow (Erlebacher/Blaisdell/Sarkar)

1997 particle transport in channel flow (Pan & Banerjee)

2005 deformable bubbles in channel flow (Lu et al.)

currently: wide range of configurations . . .

I # of publications in Phys. Fluids: 1990 – 14, 2008 – 76
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Numerical requirements for DNS

Homogeneous turbulence

I uniform grid with N × N × N points:
∆x = ∆y = ∆z = L

N

I assume a periodic field
→ use Fourier series with wavenumbers:
κ

(α)
i = 2πi

L , where: −N/2 ≤ i ≤ N/2

⇒ largest wavenumber: κmax = πN
L

I operation count per time step: using fast
Fourier transform O(N3 log N)

periodic box

L

Fourier modes: exp(Iκx)

κ = (κ(1), κ(2), κ(3))
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Homogeneous turbulence – spatial resolution

Large scale resolution

I largest flow scales need to be much smaller than box size

 otherwise: artifacts of periodicity!

I rule of thumb: (box) L ≥ 8L11 (integral scale)

I recall: largest non-zero wavenumber in DNS is κ0 = 2π
L

⇒ κ0L11 = π
4

found to be adequate by comarison with experiments
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Homogeneous turbulence – large scale resolution (2)

Energy-containing range

I smallest wavenumber:
setting κ0L11 = π

4

⇒ ≈ 95% of energy resolved

CHAPTER 6: THE SCALES OF TURBULENT MOTION

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000
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Figure 6.18: Energy spectrum function in isotropic turbulence nor-

malized by k and L11. Symbols, grid-turbulence experiments

of Comte-Bellot and Corrsin (1971): ©, Rλ = 71; ¤, Rλ =

65;4, Rλ = 61. Lines, model spectrum, Eq. (6.246): solid, p0 = 2,

Rλ = 60; dashed, p0 = 2, Rλ = 1, 000; dot-dash p0 = 4, Rλ = 60.

10

grid turbulence, Comte-Bellot & Corrsin 1971

◦ Reλ = 60 . . . 70
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Homogeneous turbulence – small scale resolution

Small scale resolution

I need to resolve the dissipation range

 otherwise: there is no sink for kinetic energy → “pile-up”

I rule of thumb: κmaxη ≥ 1.5 or ∆x ≤ πη
1.5
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Homogeneous turbulence – small scale resolution (2)

Dissipation range

I representing up to:
κmaxη = 1.5

⇒ most dissipation resolved

Pope’s model spectrum, Reλ = 600
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Homogeneous turbulence – number of grid points

Combined small/large scale requirements

I N =
L

∆x
=

12L11

πη

I how does the scale ratio L11/η evolve with Re?

I from the model spectrum: L11/L ≈ 0.43 for large Re
(recall L ≡ k3/2/ε from lecture 6)

I defining ReL ≡ k1/2L
ν we obtain: L

η = Re
3/4
L

⇒ finally: N ≈ 1.6 Re
3/4
L i.e. N3 ≈ 4.4 Re

9/4
L

 steep rise with Reynolds!
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Homogeneous turbulence – temporal resolution

Resolving the small-scale motion

I typically need: (time step) ∆t = 0.1τη (Kolmogorov scale)

Sampling sufficient large-scale events

I each simulation needs to be run for a time T given by:

T ≈ 4
k

ε
(k/ε is characteristic of large scales)

⇒ obtain for the number of time steps M :

I M =
T

∆t
=

4

0.1
Re

1/2
L
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Homogeneous turbulence – total operation count

Total number of operations per DNS, using spectral method:

I Ntot = Nop ·M ∼ N3 log(N) ·M ∼ Re
11/4
L log(ReL)

Simulation parameters for “landmark” studies:

N ReL computer speed # processors

32 180 10 Mflop/s 1 Orszag & Patterson 1972
512 4335 46 Gflop/s 512 Jimenez et al. 1993

4096 216000 16 Tflop/s 4096 Kaneda et al. 2003
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Result of high-Reynolds DNS of hom.-iso. turbulence

Kolmogorov scaling of data by Kaneda et al. (2003)

εL

u3
0

Run 2048-1. Figure 4 showsP(k) at various times in Run
2048-1. The range over whichP(k) is nearly constant is
quite wide; it is wider than the flat range of the correspond-
ing compensated-energy-spectrum~see Fig. 5!. The station-
arity is also much better than that of lower resolution DNSs
~figures omitted!, andP(k)/^e& is close to 1. In the study of
the universal features of small-scale statistics of turbulence,
if there are any, it is desirable to simulate or realize an iner-
tial subrange exhibiting~i!–~iii ! rather than~i!–~iii !. The
present results suggest that a resolution at the level of Run
2048-1 is required for such a simulation. Such DNSs are
expected to provide valuable data for the study of turbulence,
and in particular for improving our understanding of possible
universality characteristics in the inertial subrange.

These considerations motivate us to revisit another
simple but fundamental question of turbulence: ‘‘Does the
energy spectrumE(k) in the inertial subrange follow Kol-
mogorov’s k25/3 power law at large Reynolds numbers?’’
Figure 5 shows the compensated energy spectrum for the
present DNSs~the data were plotted in a slightly different
manner in our preliminary report4!. From the simulations
with up toN51024, one might think that the spectrum in the
range given by

E~k!5K0e2/3k25/3 ~1!

with the Kolmogorov constantK051.6– 1.7 is in good
agreement with experiments and numerical simulations~see,
for example, Refs. 1, 3, 9, and 10!. However, Fig. 5 also
shows that the flat region, i.e., the spectrum as described by
~1!, of the runs withN52048 and 4096 is not much wider
than that of the lower resolution simulations. The higher
resolution spectra suggest that the compensated spectrum is
not flat, but rather tilted slightly, so that it is described by

E~k!}e2/3k25/32mk, ~2!

with mkÞ0.
The detection of such a correction to the Kolmogorov

scaling, if it in fact exists, is difficult from low-resolution
DNS databases. The least square fitting of the data of the
40963 resolution simulation for (d/d logk)logE(k) to
(25/32mk)logk1b (b is a constant! in the range 0.008
,kh,0.03 givesmk50.10. The slope withmk50.10 is
shown in Fig. 5.

It may be of interest to observe the scaling of the second
order moment of velocity, both in wavenumber and physical
space. For this purpose, let us consider the structure function

S2~r !5^uv~x1r ,t !2v~x,t !u2&,

where S2 may, in general, be expanded in terms of the
spherical harmonics as

S2~r !5 (
n50

`

(
m52n

n

f nm~r !Pn
m~cosu!eimf.

Here,r 5ur u andu,f are the angular variables ofr in spheri-
cal polar coordinates,Pn

m is the associated Legendre polyno-
mial of ordern,m, and f nm(5 f n,2m* ) is a function of onlyr ,
where the asterisk denotes the complex conjugate. The time
argument is omitted. ForS2 satisfying the symmetryS2(r )
5S2(2r ), we havef km50 for any odd integerk. In strictly
isotropic turbulence,f nm must be zero not only for oddn,
but also for anyn and m exceptn5m50. However, our
preliminary analysis of the DNS data suggests that the an-
isotropy is small but nonzero. In such cases,f nm is also small
but nonzero, andS2 itself may not be a good approximation
for f 05 f 00. To improve the approximation forf 0 , one
might, for example, take the average ofS2 over r /r

FIG. 3. Normalized energy dissipation rateD versusRl from Ref. 5~data
up to Rl5250), Ref. 3~n,d!, and the present DNS databases~j,m!.

FIG. 4. P(k)/^e& obtained from Run 2048-1.

FIG. 5. Compensated energy spectra from DNSs with~A! 5123, 10243, and
~B! 20483, 40963 grid points. Scales on the right and left are for~A! and~B!,
respectively.
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2048-1. The range over whichP(k) is nearly constant is
quite wide; it is wider than the flat range of the correspond-
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~figures omitted!, andP(k)/^e& is close to 1. In the study of
the universal features of small-scale statistics of turbulence,
if there are any, it is desirable to simulate or realize an iner-
tial subrange exhibiting~i!–~iii ! rather than~i!–~iii !. The
present results suggest that a resolution at the level of Run
2048-1 is required for such a simulation. Such DNSs are
expected to provide valuable data for the study of turbulence,
and in particular for improving our understanding of possible
universality characteristics in the inertial subrange.

These considerations motivate us to revisit another
simple but fundamental question of turbulence: ‘‘Does the
energy spectrumE(k) in the inertial subrange follow Kol-
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Figure 5 shows the compensated energy spectrum for the
present DNSs~the data were plotted in a slightly different
manner in our preliminary report4!. From the simulations
with up toN51024, one might think that the spectrum in the
range given by
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with the Kolmogorov constantK051.6– 1.7 is in good
agreement with experiments and numerical simulations~see,
for example, Refs. 1, 3, 9, and 10!. However, Fig. 5 also
shows that the flat region, i.e., the spectrum as described by
~1!, of the runs withN52048 and 4096 is not much wider
than that of the lower resolution simulations. The higher
resolution spectra suggest that the compensated spectrum is
not flat, but rather tilted slightly, so that it is described by

E~k!}e2/3k25/32mk, ~2!
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The detection of such a correction to the Kolmogorov
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40963 resolution simulation for (d/d logk)logE(k) to
(25/32mk)logk1b (b is a constant! in the range 0.008
,kh,0.03 givesmk50.10. The slope withmk50.10 is
shown in Fig. 5.

It may be of interest to observe the scaling of the second
order moment of velocity, both in wavenumber and physical
space. For this purpose, let us consider the structure function
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where S2 may, in general, be expanded in terms of the
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mial of ordern,m, and f nm(5 f n,2m* ) is a function of onlyr ,
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argument is omitted. ForS2 satisfying the symmetryS2(r )
5S2(2r ), we havef km50 for any odd integerk. In strictly
isotropic turbulence,f nm must be zero not only for oddn,
but also for anyn and m exceptn5m50. However, our
preliminary analysis of the DNS data suggests that the an-
isotropy is small but nonzero. In such cases,f nm is also small
but nonzero, andS2 itself may not be a good approximation
for f 05 f 00. To improve the approximation forf 0 , one
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up to Rl5250), Ref. 3~n,d!, and the present DNS databases~j,m!.
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I scaling largely confirmed
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Evolution of computer speed

single-processor CPU speed

(from Hirsch 2007)
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(data from top500.org)

I large CPU speed increase

I limitation: power & heat

I massively-parallel machines
maintain exp-growth

⇒ peak performance doubles every 18 months
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Boundary conditions for DNS

No particular problems posed by the following boundaries:

I solid walls, homogeneous directions, far-field

The problem of inflow-outflow boundaries:
we need to prescribe turbulence!

1. Taylor’s hypothesis → temporal instead of spatial variation

2. rescaled outflow used as inflow (Spalart) → works for BL

3. impose artificial turbulence at inflow (Le & Moin) → long
evolution length

4. periodic companion simulation (Na & Moin) → generates
inflow
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Wall turbulence – numerical requirements

Number of grid points, using spectral method:

I N3 ≈ 0.01 Re3
τ

(
Lx
h

) (
Lz
h

)
Total number of operations per DNS, using spectral method:

I Ntot ∼ Re4
τ

(
Lx
h

)2 (
Lz
h

)
Simulation parameters for “landmark” studies:

N3 Reτ Lx/h Lz/h

4 · 106 180 4π 2π Kim, Moin & Moser 1987
3.8 · 107 590 2π π Moser, Kim & Mansour 1999
1.8 · 1010 2000 8π 3π Hoyas & Jimenez 2006

25 / 39

Introduction to DNS
DNS of wall-bounded flow

Conclusion

Physical insight from DNS
Consequences of coherent structures

Wall turbulence – visualization

Channel flow at Reτ = 590 2hy,v

x,uz,w

I visualizing streamwise velocity fluctuations u′

x-y slice

→ flow direction

z-y slice

⊗ flow direction
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Wall turbulence – visualization (2)

Channel flow at Reτ = 590, wall-parallel planes, u′

x-z slice, wall-distance y+ = 45

→ flow direction

x-z slice, wall-distance y+ = 170

→ flow direction

I typical structures: streamwise velocity “streaks”

→ found in all boundary-layer type flows
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Facts about velocity streaks in the buffer layer

Statistically speaking:

I lateral spacing of streaks:

∆`+
z ≈ 100

I how do we know?

⇒ two-point correlations:
minimum of Ruu at
half of the streak spacing

=⇒ flow

Ruu

0 100 200

−0.2
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0.2

0.4

0.6

0.8

1

r+
z

(Moser et al. 1999)
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Streamwise vortices

•• Streamwise vortices (ω′x)

`+
x ≈ 200

I associated with streaks

(from Jeong et al. 1997)198 J. Jeong, F. Hussain, W. Schoppa and J. Kim

(b)

(a)

(c)

Low-speed streak

Sections in figure 9 (a)–(e)
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Figure 10. Conceptual model of an array of CS and their spatial relationship with experimentally
observed events discussed in the text: (a) top view; (b) side view; (c) structures at cross-section FG
in (a); (d) expanded views of structures C and D in (a,b), showing the relative locations of Q1, Q2,
Q3, Q4, E and H. A schematic demonstrating the counteracting precession of SN in the (x, z)-plane
due to background shear is shown in (e). The arrows in (b) denote the sections of figure 9(a–e).

=⇒ flow
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Complex vortex tangles at different Reynolds numbers

Reτ = 180

Reτ = 1900

(from del Alamo et al. 2006)

(movie)
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Sometimes less is more: reducing the complexity

The “minimal flow unit” of Jimenez & Moin

(sketch)

(from Jimenez & Moin 1991)

I reducing the box size to a minimum without relaminarizing

I min L+
x ≈ 350, min L+

z ≈ 100

⇒ cheap “laboratory” with principal buffer layer features
31 / 39

Introduction to DNS
DNS of wall-bounded flow

Conclusion

Physical insight from DNS
Consequences of coherent structures

Sometimes wrong is right: manipulating the equations

The “autonomous wall” of Jimenez & Pinelli (1999)

〈u〉
U0

〈u〉

filter

I suppress u′ for y + ≥ 60

⇒ turbulence survives!

I near-wall region: statistics
approximately unchanged

346 J. Jiménez and A. Pinelli

Figure 5. Explicitly filtered channel, as in figure 4. The low-velocity streak is visualized as the
|ω′|+ = 0.25 isosurface of the perturbation vorticity magnitude. The flow is from left to right and
the figure looks into the wall. From top to bottom, U0t/h = 0, 15, 19.5, 25. The image is advected
with a velocity Uc = 0.37U0 = 9.7uτ, to keep the central structure approximately steady. The size
of the displayed domain is 700× 115 wall units.

5. The streak cycle
We have seen in the previous section that there is an autonomous regeneration

mechanism in the near-wall region, and we have presented tentative evidence that a
sinuous instability of the streaks is involved, at least occasionally. We will not attempt
in this paper to separate the contributions of the different possible instability modes
but, in the spirit of the remarks in § 3, we will try to show that the presence of
coherent streaks is a necessary ingredient for the regeneration of the quasi-streamwise
vortices, as sketched in the streak cycle in figure 1. This we will do by eliminating
the streaks without directly perturbing the vortices. If the streak cycle were in fact
the key regeneration mechanism, this would prevent the production of new vortices,
the existing ones would eventually decay due to viscosity, and turbulence would
either be damped or decay altogether. On the other hand, if this were not the case,
turbulence would either be enhanced or remain essentially unaffected. We will show
that the former is true and, in the process, we will give bounds for the location of the
important mechanism. In addition we will also be able to show that the generation of
coherent streaks by wall-normal advection of the velocity profile is a necessary part
of the generation cycle.

I time sequence of streak
break-up (movie)
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What happens outside the buffer layer?

Hairpin vortices growing into vortex packets

An example of several hairpin vortex patterns from an
experimental boundary layer is presented in Fig. 6. The
heads of the hairpins are labeled A–D and the reader can see
by inspection where the other elements of the hairpin vortex
signature occur. Note that the Q2 vectors fall along regions
inclined at about 45 degrees to the wall, as in Ref. 15, and
each Q2 event has a local maximum of the flow speed. The
consistent formation of maxima is key evidence for inferring
the existence of a hairpin head and neck from the planar PIV
data. A straight spanwise vortex would not produce the ob-
served maximum, and the induced flow would be more axi-
symmetric. The important effect of the curvature of the head
and necks of the hairpin is to focus induction in the inboard
region and defocus it in the outboard region, consistent with
the Q2 events being stronger �greater speed� than the Q4
events above the legs.33

To summarize, the single hairpin eddy is a useful para-
digm that explains many observations in wall turbulence. In
particular, it provides a mechanism for creating Reynolds

shear stress, low-speed streaks, and for transporting vorticity
of the mean shear at the wall away from the wall and for
transforming it into more isotropically distributed small-
scale turbulent vorticity.

III. HAIRPIN VORTEX PACKETS

The discussion thus far has concentrated on the single
hairpin or horseshoe vortex, but as noted in the Introduction
there is evidence in earlier studies that hairpins occur in
streamwise succession, with size increasing down-
stream.15–18,33,35–37 The pattern of hairpin vortex signatures
A–C in Fig. 6 is consistent with these observations, and pat-
terns like this are observed with high frequency in PIV
data.33 A major conclusion of the PIV study was that hairpins
occur most often in packets, so named because the individual
hairpins travel with nearly equal velocities, i.e., the groups of
hairpins form packets having relatively small dispersion in
their velocity of propagation. Recall that long life is one of
the major prerequisites for a coherent structure, and to be
long-lived, dispersion must be small. Adrian et al.33 report
dispersion less than 7% at the Reynolds numbers they stud-
ied.

The mechanisms that lead to the formation of hairpins in
packets have been explored by analysis18 and by numerical
studies of packet growth.36,37 An example of a packet pattern
computed using DNS of fully turbulent channel flow is pre-
sented in Fig. 7�a�. The packet evolves from an initial veloc-
ity field consisting of a three-dimensional conditional eddy
similar to that in Fig. 4 plus a turbulent mean flow profile.
The initial conditional eddy rapidly changes into an omega-
shaped hairpin with trailing legs looking much like the
sketch in Fig. 5. The distance between its legs is about 100��

and the height of its head, once formed into a mature omega,
is also about 100��. After attaining a mature omega shape,
the primary hairpin continues to grow in all directions, and
two new hairpin heads are formed: a downstream hairpin
vortex �DHV� and a secondary hairpin vortex �SHV�. The
SHV is created by the interaction of low-speed fluid being
pumped upwards by induction between the legs with high-
speed fluid above the legs, leading to a vortex roll-up that
forms an arch. The necks develop under the arch of the SHV
and merge with the legs. In the flow that produces Fig. 7�a�,
the SHV generates another upflow, leading to the formation
of a tertiary hairpin vortex, and so on. The DHV is formed
when the protrusions on the downstream face of the condi-
tional eddy are pulled out into a pair of nearly streamwise
vortices that then act like the wall-attached legs to induce an
upward flow that rolls up into the arch of the DHV. Note,
however, that the DHV appears to be detached from the wall.
New quasistreamwise vortices are also generated very close
to the wall and beside the legs of the hairpins. They have
been attributed to the Brooke-Hanratty mechanism38 in
which the outboard downwash induced by a leg separates at
the wall and rolls up to form a new vortex rotating counter to
the original.

The formation of new hairpins is called auto-
generation.36,37 It is a nonlinear process, in the sense that it
only occurs if the magnitude of the event vector used to

FIG. 5. �a� Schematic of a hairpin eddy attached to the wall; �b� signature of
the hairpin eddy in the streamwise-wall-normal plane �from Ref. 33�.
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inferring three-dimensional structure from two-dimensional
data. It would seem like the most direct method of observing
hairpin packets would lie in the careful visualization of DNS
of fully turbulent wall flows. Unfortunately, visualizing hair-
pins in fully turbulent DNS flows proved to be difficult for
many years, partly due to the complexity of fully turbulent
flow and partly due to the issue of identifying vortices. Even
the visualization of a single three-dimensional hairpin shape
in turbulent channel flow simulated by DNS awaited the
work of Chacin, Cantwell, and Kline40 �almost a decade after
the channel flow simulation of Kim, Moin, and Moser41�.
This careful study provided some of the best evidence for the
existence of hairpins, albeit at low Reynolds number.

Evidence from a relatively recent study31 showing the
existence of three-dimensional packets in DNS of fully tur-
bulent channel flow is reproduced in Fig. 9. By visual in-
spection, all of the vortices resembling hairpins were high-
lighted in white, without bias toward any particular
arrangement. Once the individual hairpins were identified,
the arrangement in the form of a hairpin packet �or perhaps
two hairpin packets each containing four to five hairpins�
was clear. The spanwise growth angle, about 12°, and a simi-
lar vertical growth angle �not shown� agreed well with the
PIV data and with the single-packet simulations. Interest-
ingly, the chaotic structure in the fully turbulent flow is
qualitatively similar to the structure of the chaotic hairpin
packet in Fig. 8, in the same broad sense that the chaotic
packet resembles the clean packets, as discussed above. The
fully turbulent packet pattern is not significantly more com-
plex than the packet in Fig. 8, although it appears to be
immersed in considerable small-scale vortex debris. �The
concept of organized structure in a sea of random vortices
can already be found in Ref. 19.� The similarity further sup-
ports the idea that packets grow and evolve in a robust man-
ner whether they are stimulated by an initial disturbance in a
clean environment or occur naturally in a fully turbulent
environment.

In the results presented thus far, the Reynolds numbers
are relatively low, leaving open questions concerning the ex-
istence and form of packets at high Reynolds number. First,

higher Reynolds number LES and DNS results42,43 contain
such large numbers of small-scale vortices that three-
dimensional packets are not easily recognized by eye or by
systematic three-dimensional image analysis. Second, at
Reynolds numbers that are accessible to DNS with current
computers, the hairpins have viscous cores with circulation
Reynolds numbers of order 10–30. Can such flow entities
persist at very large Reynolds number or will they become
unstable? Third, by the time packets grow to fill the low
Reynolds number channel flows in Figs. 7–9, they only con-
tain three to four hairpins. Increasing the Reynolds number

FIG. 8. �Color� Chaotic packet of hair-
pins that evolves from an initial con-
ditional Q2 event �w=0� similar to
that shown in Fig. 4 with 5% noise
added to simulate growth in a slightly
turbulent environment. The time is
355 viscous time scales after the initial
condition and the channel flow Rey-
nolds number is Re�=395 �courtesy of
K. Kim� �enhanced online�.

FIG. 9. Hairpin packets can be observed in DNS of fully turbulent channel
flows. Re�=300. The heads of hairpins that appear to be members of one or
perhaps two packets are indicated in white. Note the large amount of disor-
ganized small-scale clutter �from Ref. 31�.
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I structures in outer region
still under investigation!

33 / 39

Introduction to DNS
DNS of wall-bounded flow

Conclusion

Physical insight from DNS
Consequences of coherent structures

How can we apply knowledge about coherent structures?

Control of turbulent flow

I “opposition control” (Choi, Moin & Kim 1994)

I imposing vwall(x , z) = −v ′(x , y + =10, z)

→ up to 25% drag reduction

 but: this method is not practical

I other feasible techniques exist, where sensing is performed at
the wall
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Reduced order models of the wall region

Waleffe’s self-sustained process

I generic mechanism

I streamwise vortices generate
streaks by advection

I streaks are unstable
to sinusoidal perturbations

I perturbations generate
new vortices by self-interaction

→ 4-equ. model for artificial flow

 but: not feasible in practice

interest. Simple nonlinear models,14,21,22illustrating how lin-
ear transient growth and ‘‘nonlinear mixing’’ could lead to
transition, have been shown19 to violate basic properties of
the Navier–Stokes nonlinearity~see also Secs. III and V!.

One approach that directly attacks the full nonlinear
problem is to look for new fixed points of the dynamical
system. In practice, this is extremely difficult as the basic
tool—Newton’s method—requires a very good initial guess
of the fixed point. The primary technique has beencontinu-
ationmethods, where one starts from an ‘‘adjacent’’ problem
for which a nontrivial fixed point is accessible then hopes to
follow it through parameter space to the region of interest.
Malkus and Zaff23 used that strategy numerically and experi-
mentally by starting from pressure-driven Ekman flow. This
is the flow between two parallel planes rotating around the
normal to the planes. By progressively reducing the rotation
rate, they managed to track nontrivial solutions back to Poi-
seuille flow. However, from their experimental observations
they concluded that a concurrent spot-like process, uncon-
nected to their new solutions, occurred as plane Poiseuille
flow was approached. Nagata24 started from Taylor–Couette
flow in the narrow gap limit which is plane Couette flow
rotating around the spanwise direction~parallel to the walls
and perpendicular to the flow direction!. By following a se-
ries of bifurcations, Nagata succeeded in tracking fixed
points to nonrotating plane Couette flow. But those solutions
survived at Reynolds numbers three times smaller than the
Rc observed experimentally and were later found to be un-
stable by Clever and Busse.25 No clues have been offered as
to the relevance of those solutions and their relation to ex-
periments, until the work reported in Ref. 19. The fixed point
continuation approach is a nice procedure, however it re-
quires much artistry and is by no means guaranteed to suc-
ceed. The continuation approach also offers limited insight
into the nonlinear mechanics of the new solutions.

A different approach based on a detailed mechanistic
understanding of the new nonlinear states has been followed
by this author together with Kim and Hamilton.18,19,26,27

Where most previous endeavors focused on transient mecha-
nisms that occur during the transition to turbulence, the ob-
jective of this approach was instead to extract those mecha-
nisms thatmaintain the turbulence. From the synthesis of a
large body of experimental observations and theoretical
work, it has been possible to identify a fundamental self-
sustaining process in shear flows. The identification of that
process was guided by the conceptual pictures of the ‘‘burst-
ing process’’ and associatedhorseshoe vorticesobserved in
turbulent boundary layers28 as well as by the ‘‘mean flow-
first harmonic theory’’ proposed by Benney.29

The self-sustaining process consists of three distinct
phases. First, weak streamwise rolls@0,V(y,z),W(y,z)# re-
distribute the streamwise momentum to create large span-
wise fluctuations in the streamwise velocityU(y)→U(y,z).
The spanwise inflections then lead to a wake-like instability
in which a three-dimensional disturbance of the form
eiaxv(y,z) develops. The primary nonlinear effect resulting
from the development of the instability is to reenergize the
original streamwise rollsvv*→V(y,z), leading to a three-
dimensional self-sustaining nonlinear process~Fig. 1!.

This process was first isolated in the form of remarkably
organized nearly time-periodic solutions of the Navier–
Stokes equations~Figs. 5 and 6 in Ref. 26!. Those solutions
were obtained by starting from an equilibrated turbulent flow
and tracking it down for decreasing box size, a procedure
inspired in part by the work of Jimenez and Moin.30 This
tracking procedure amounts to a continuation technique in a
three-dimensional parameter space corresponding to the
Reynolds number and the periods in the streamwisex and
spanwisez directions, but it is a turbulent solution that is
tracked instead of fixed points. Further such numerical simu-
lations have been done together with detailed analyses of
each phase of the process through a series of controlled nu-
merical simulations of the Navier–Stokes equations~Figs. 2,
3, and 4 in Ref. 27!. An eigenmode analysis of the instability
of the two-dimensionalU(y,z) profile has also been done
together with an explicit verification that the nonlinear inter-
action of the growing eigenmode does indeed feed back on
the streamwise rolls.18 Finally, a low-order model of the pro-
cess has been proposed18,19 that may provide a framework to
connect the steady solutions in plane Couette flow24 and the
nearly time-periodic solutions.26,27

The steady solutions24 have been tracked down to Rey-
nolds numbersR'120 in plane Couette flow but the nearly
periodic solutions26,27 apparently disappear belowR'350.
The latter critical valueR'350 coincides with that found in
experiments31–33 and computations34 for larger horizontal
domains, in which case the solutions are quite disordered and
spot-like. This discrepancy between critical Reynolds num-
bers led to questions about the relevance, and validity, of the
steady solutions. The solutions have been confirmed25,35 but
shown to be unstable. The low-order model has shed some
light on this situation as it shows a saddle-node bifurcation,
aroundR5100 for some values of the parameters, from
which two new steady solutions arise, in addition to the lami-
nar solution, but typically both are unstable. Around
R5350 however, a global bifurcation of homoclinic type
takes place leading to a stable periodic solution.

This paper has two parts. In Sec. II, the self-sustaining
cycle ~Fig. 1! is cut open and its three phases are studied in
succession. That part closely parallels an earlier study.18 The
principal objectives here are to establish the relevant symme-
tries of the process and to demonstrate its insensitivity to
whether there is no-slip or free-slip at the walls. This insen-
sitivity to the boundary conditions underlines the robustness
of the process. In the present study we concentrate on steady

FIG. 1. The self-sustaining process.
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⇒ similar models could be used with LES in future . . .
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Periodic solutions: “building blocks” for future models?

Exact periodic solutions are currently pursued in various flows502 G. Kawahara et al.: Unstable periodic motion in turbulent flows
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Fig. 3. A full cycle of time-periodic flow (Kawahara and Kida, 2001). Flow structures are visualised in the whole spatially periodic box
(Lx×2h×Lz) over one full cycle at nine times shown with open circles in Fig.2, where panels (a) and (f) correspond respectively to the
lowest and highest circles there. Time elapses from(a) to (i) by 7.2h/U . The upper (or lower) wall moves into (or out of) the page at
velocity U (or −U ). Streamwise vortices are represented by iso-surfaces of the Laplacian of pressure,∇

2p=0.15ρ(U/h)2, whereρ is the
mass density of fluid. Brightness of the iso-surfaces of∇

2p indicates the sign of the streamwise (x) vorticity: white is positive (clockwise),
black is negative (counter-clockwise). Cross-flow velocity vectors and contours of the streamwise velocity atu=−0.3U are also shown on
cross-flow planesx=const.

streamwise wavenumber, the zeroth-order Chebyshev poly-
nomial, and the 2π/Lz spanwise wavenumber. We have
chosen the variablẽωy 0,0,1, because it represents low- and

high-velocity streaks which play a crucial role in the regen-
eration cycle of near-wall turbulence. We here employ an
iterative method to numerically obtain an unstable periodic

Nonlin. Processes Geophys., 13, 499–507, 2006 www.nonlin-processes-geophys.net/13/499/2006/

(movie)

(one period of a Couette flow solution, from Kawahara et al. 2006)
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Summary

Main issues of the present lecture

I DNS is useful as a research tool
I precise experiment/perfect measurement

I virtual experiment

I non-natural experiment

I estimates of operation count rise sharply with Reynolds

I suitable inflow boundary conditions are difficult to generate

I streaks & streamwise vortices are fundamental ingredients of
turbulence regeneration cycle
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Outlook on next lecture: Introduction to RANS modelling

How can the Reynolds-averaged equations be closed?

What are the different types of models commonly used?

Do simple eddy viscosity models allow for acceptable
predictions?
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Further reading

I S. Pope, Turbulent flows, 2000
→ chapter 9 & 7.4

I P. Moin and K. Mahesh, DNS: A tool in turbulence research,
Annu. Rev. Fluid Mech., 1998, vol 30, pp. 39.

I this is a very active area; more information can be found in
the current research literature (Journal of Fluid Mechanics,
Physics of Fluids, Journal of Computational Physics)
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