

Examples of tubulent wall-bounded flows (1)

Rivers

also: man-made canals, some ocean currents

5 / 36

Examples of tubulent wall-bounded flows (2)

Vehicle aerodynamics

Citroen DS, ONERA

NASA aerodynamic truck

Examples of tubulent wall-bounded flows (3)

Atmospheric boundary layer:

storm clouds

7 / 36

Plane channel flow Wall roughness Conclusion

Examples of tubulent wall-bounded flows (4)

Internal flows:

pipeline systems

also: internal combustion engines, compressors, pumps, blood flow, ...

^{10 / 36}

Mean flow equations

Continuity equation (considering *x*-*z*-homogeneity)

$$\partial_{x}\langle u\rangle + \partial_{y}\langle v\rangle + \partial_{z}\langle w\rangle = 0$$

 \Rightarrow mean wall-normal velocity $\langle v \rangle(y) = 0$, since $\langle v \rangle = 0$ at walls

Mean wall-normal momentum equation

$$\frac{1}{\rho}\partial_y \langle \boldsymbol{p} \rangle + \partial_y \langle \boldsymbol{v}' \boldsymbol{v}' \rangle = \mathbf{0}$$

 \Rightarrow mean axial pressure gradient is constant: $\partial_x \langle p \rangle = cst$.

11/36

 $\begin{array}{l} \mbox{Plane channel flow}\\ \mbox{Vall roughness}\\ \mbox{Conclusion} \end{array} \end{tabular} \label{eq:product} \\ \mbox{Mean flow equations (2)} \end{array}$ $\begin{array}{l} \mbox{Mean streamwise momentum equation} \\ & \frac{1}{\rho}\partial_x\langle p\rangle + \partial_y\langle u'v'\rangle = \nu\partial_{yy}\langle u\rangle \\ \mbox{\blacktriangleright define total shear stress: $\tau \equiv \rho\nu\partial_y\langle u\rangle - \rho\langle u'v'\rangle \\ \mbox{\Rightarrow varies linearly: $\begin{smallmatrix} \tau(y) = \tau(y) = \tau(y) = \tau(y) \\ \mbox{\models here $tress: $tress: $tress$ = $tress$ where $tress$ where $tress$ = $tress$ where $tress$ where $tress$ = $tress$ where $tress$ where $tress$ = $tress$ = $tress$ where $tress$ = $tresss$

Mean flow Turbulence statistics

Mean velocity profile

ightarrow friction Reynolds number: $Re_{ au} \equiv rac{u_{ au}h}{
u} = rac{h}{\delta_{
u}}$

wall-distance in viscous lengths ("wall units"):

$$y^+ \equiv rac{y}{\delta_
u} = rac{u_ au y}{
u}$$

 \rightarrow y⁺ equivalent to a local Reynolds number

The inner layer – the law of the wall

Mean flow behavior derived from the law of the wall

Outer layer – velocity defect law

Plane channel flow Wall roughness Conclusion	Mean flow Turbulence statistics		
Summary of regions in near-wall flow			
inner layer: $\langle u \rangle$ independent of U_0			
viscous wall region: viscous contribution of shear stress significant $(y^+ < 50)$	$10^{-1} \begin{bmatrix} y/h = 0.3 \\ log law \\ region \\ layer \\ y/h = 0.1 \\ overlap \\ region \\ region \end{bmatrix}$		
 viscous sublayer: Reynolds shear stress negligible 	y 10 ⁻² buffer layer $y^+=50$		
buffer layer: region between viscous sublayer and log-region	$\overline{h}_{10^{-3}}$ viscous sublayer $y^+=30$		
logarithmic region: the log-law holds	layer		
• outer layer: direct effects of viscosity on $\langle u \rangle$ negligible	$10^{-4} \begin{bmatrix} y & -3 \\ 10^3 & 10^4 & 10^5 & 10^6 \end{bmatrix}$		
 overlap region: overlap between inner and outer layers 	Reb (from Pope "Turbulence")		

Plane ch	annel	flow
Wall	rough	ness
(Conclu	ision

The friction law for channel flow

- transition occurs around *Re_b* = 1000
- integrating log-law: $Re_{ au} \approx 0.166 Re_{b}^{0.88}$

- ▶ lengthscale ratio $h/\delta_{\nu} = Re_{\tau}$ increases almost linearly with Re_b
- \rightarrow very small viscous scales at high Reynolds numbers

Near-wall asymptotics of velocity fluctuations

 $\blacktriangleright \langle u'v' \rangle = \mathcal{O}(y^3)$

10⁻²

10

y/h

10-

Turbulent kinetic energy bugdet

integral scale depends strongly on component <u>and</u> direction
 turbulence structure highly anisotropic and inhomogeneous

0.6

0.4

y/h

0.2

0.8

0.2

0.4

y/h

0.6

0.8

1

Length scales in plane channel flow (2)

- details of flow in cavities is complicated
- consequence: ansatz for mean velocity modified

$$\frac{\mathsf{d}\langle u\rangle}{\mathsf{d}y} = \frac{u_{\tau}}{y} \cdot \bar{\Phi}\left(y^+, \frac{y}{h}, s^+\right)$$

s ț

Transitional roughness – influence of shape

Roughness function ΔU^+

equivalent form of log-law:

$$u^+ = \frac{1}{\kappa} \log\left(y^+\right) + B - \Delta U^+$$

- with: $\Delta U^+ = \frac{1}{\kappa} \log (s^+) + B - \tilde{B}$
- ΔU⁺ measures departure from smooth-wall behavior
- measurements show: friction can be decreased!

Summary

Main questions of the present lecture

- What is the general structure of wall-bounded flows?
 inner layer/outer layer: linear/log-law, defect law
- How does the presence of a solid boundary affect the turbulent motion?
 - stronger anisotropy than free shear flows

Wall roughness

Conclusion

Outlook

Further reading

- wall has selective effect on velocity components
- What is the effect of wall roughness?
 - shift of the log-law compared to smooth walls

Discussion of coherent structures \rightarrow lecture 7

