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Summary of last lecture

Lecture 5 – The scales of turbulent motion

I The turbulent energy cascade
I hierarchy of eddies, downward transfer of energy

I dissipation determined by large scales,
performed by small scales

I Kolmogorov’s theory
I building block of turbulence research

I valuable results for small scales (e.g. κ−5/3 spectrum)

I BUT: Problem of non-universality of large scales
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LECTURE 6

Wall-bounded shear flows
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Questions to be answered in the present lecture

What is the general structure of wall-bounded flows?

How does the presence of a solid boundary affect the turbulent
motion?

What is the effect of wall roughness?
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Examples of tubulent wall-bounded flows (1)

Rivers

also: man-made canals, some ocean currents
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Examples of tubulent wall-bounded flows (2)

Vehicle aerodynamics

Citroen DS, ONERA NASA aerodynamic truck
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Examples of tubulent wall-bounded flows (3)

Atmospheric boundary layer:

storm clouds
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Examples of tubulent wall-bounded flows (4)

Internal flows:

pipeline systems

water turbine

also: internal combustion engines, compressors, pumps,
blood flow, . . .
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Canonical wall-bounded flows

Idealized configurations

I plane channel flow

I pipe flow

I flat-plate boundary layer

CHAPTER 7: WALL FLOWS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000
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Figure 7.1: Sketch of (a) channel flow (b) pipe flow and (c) flat-plate

boundary layer.
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Mean flow
Turbulence statistics

Plane channel flow configuration

2hy,v

x,u
z,w

I statistically stationary & fully developed (far from inlet)

→ homogeneous in x- & z-direction

I definition of “bulk velocity”: ub ≡
∫ 2h

0 〈u〉dy/(2h)

→ bulk Reynolds number: Reb ≡ ubh/ν

I Reynolds at centerline: Re0 ≡ U0h/ν with U0 = 〈u〉(y =h)
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Mean flow equations

Continuity equation (considering x-z-homogeneity)

���∂x〈u〉+ ∂y 〈v〉+���∂z〈w〉 = 0

⇒ mean wall-normal velocity 〈v〉(y) = 0, since 〈v〉 = 0 at walls

Mean wall-normal momentum equation

1

ρ
∂y 〈p〉+ ∂y 〈v ′v ′〉 = 0

⇒ mean axial pressure gradient is constant: ∂x〈p〉 = cst.
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Mean flow equations (2)

Mean streamwise momentum equation

1

ρ
∂x〈p〉+ ∂y 〈u′v ′〉 = ν∂yy 〈u〉

I define total shear stress: τ ≡ ρν∂y 〈u〉 − ρ〈u′v ′〉

⇒ varies linearly: τ(y) = τw (1− y

h
) where τw ≡ τ(y = 0)

I integral balance yields: ∂x〈p〉 = −τw/h

In laminar flow we obtain:

I 〈u〉(y) = τw
ρν

y
2

(
2− y

h

)
, ub = 2

3 U0

I friction factor: cf ≡ τw
ρu2

b/2
= 6

Reb
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Mean velocity profile

DNS data of Jimenez et al.
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I mean velocity profiles depend upon Reynolds number
(contrary to free shear flows!)

I viscous stress ρν∂y 〈u〉 is always important near the wall
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Characteristic scales in the near-wall region

Viscosity and wall shear-stress are important parameters

I define friction velocity and viscous length scale:

uτ ≡
√
τw
ρ
, δν ≡ ν

√
ρ

τw
=

ν

uτ

→ friction Reynolds number: Reτ ≡ uτh

ν
=

h

δν
I wall-distance in viscous lengths (“wall units”):

y + ≡ y

δν
=

uτy

ν

→ y + equivalent to a local Reynolds number
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Importance of viscous and turbulent effects

Data shows near the wall:

I stress curves collapse when
plotted against y +

I viscous contribution
decreases with y +
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DNS data of Jimenez et al, Reτ = 180 . . . 2000
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I y + < 5: viscous sublayer – Reynolds stress negligible

I y + < 50: viscous wall-region – direct effect of viscosity

I y + > 50: outer layer – no direct viscous effect
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Scaling of the mean velocity profile

Selecting the relevant parameters – dimensional considerations

I channel flow is fully determined by: ρ, ν, h, uτ

I wall-distance y is the only relevant coordinate

→ two non-dimensional numbers (y/h & Reτ or y/h & y +)

⇒ we can write the ansatz:
d〈u〉
dy

=
uτ
y
· Φ
(

y +,
y

h

)
I Φ is a general non-dimensional function
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The inner layer – the law of the wall

For y/h� 1 velocity profile is independent of h

I lim
y/h→0

Φ
(

y +,
y

h

)
= ΦI

(
y +
)

→ this yields:
du+

dy +
=

1

y +
· ΦI

(
y +
)
, with: u+ ≡ 〈u〉/uτ

I integration gives: u+ = fw (y +) “law of the wall”

I experiments show:

fw (y +) is universal function (BL, channel, pipe . . .)
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Mean flow behavior derived from the law of the wall

Viscous sublayer (y+ < 5)

I Taylor expansion around y =0:

u+ = y + “linear law”

Logarithmic layer (y+ > 30)

I for large y +, the function
ΦI (y +) becomes constant:

u+ =
1

κ
log(y +) + B “log-law”

I κ ≈ 0.41, B ≈ 5.2

u+

——DNS by Jimenez et al, Reτ = 180 . . . 2000
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Outer layer – velocity defect law

For y+ > 50: velocity profile independent of viscosity

I lim
y/h→∞

Φ
(

y +,
y

h

)
= ΦO

(y

h

)
→ this yields:

du

dy
=

uτ
y
· ΦO

(y

h

)
I integration from y to h:

U0 − 〈u〉
uτ

= FD

(y

h

)
I note: function FD is not

universal!
(different in boundary layer)

U
0
−
〈u
〉

u
τ

——DNS by Jimenez et al., Reτ = 2000
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for comparison: – – – –log-law
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Summary of regions in near-wall flow

I inner layer: 〈u〉 independent of U0

and h

I viscous wall region: viscous
contribution of shear stress
significant (y+ < 50)

I viscous sublayer: Reynolds shear
stress negligible

I buffer layer: region between viscous
sublayer and log-region

I logarithmic region: the log-law holds

I outer layer: direct effects of viscosity
on 〈u〉 negligible

I overlap region: overlap between
inner and outer layers

y

h

Reb

(from Pope “Turbulence”)
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The friction law for channel flow

I friction factor:
cf ≡ τw

ρu2
b/2

= 2u2
τ

u2
b

I transition occurs around
Reb = 1000

I integrating log-law:

Reτ ≈ 0.166 Re0.88
b

cf

– – – – laminar, • exp. Dean (1978)

CHAPTER 7: WALL FLOWS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000

102 103 104 105 106
0.000

0.002

0.004

0.006

0.008

0.010

Re

cf

Figure 7.10: Skin friction coefficient cf ≡ τw/(1
2
ρU 2

0 ) against Reynolds

number (Re = 2Ūδ/ν) for channel flow: symbols, experimental

data compiled by Dean (1978); solid line, from Eq. (7.55); dashed

line, laminar friction law cf = 16/(3Re).

9

2Reb

I lengthscale ratio h/δν =Reτ increases almost linearly with Reb

→ very small viscous scales at high Reynolds numbers
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Profiles of the Reynolds stress components

Observations from exp. & DNS

I peak TKE in buffer layer

→ signatures of coherent
structures (cf. lecture 7)

I anisotropy bij

I strong changes in viscous
wall region

I plateau in log-region

I towards isotropy in core
flow
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DNS by Jimenez et al., Reτ = 2000
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Near-wall asymptotics of velocity fluctuations

Taylor expansion for small wall-distance y :

u′(y) = �a1 + b1 y + c1 y2 + . . .

v ′(y) = �a2 +��b2 y + c2 y2 + . . .

w ′(y) = �a3 + b3 y + c3 y2 + . . . ⇒
〈u′u′〉 = 〈b2

1〉 y2 + . . .

〈v ′v ′〉 = 〈c2
2 〉 y4 + . . .

〈w ′w ′〉 = 〈b2
3〉 y2 + . . .

〈u′v ′〉 = 〈b1c2〉 y3 + . . .

I no-slip, impermeability: a1 = a2 = a3 = 0

I continuity: ∂y v ′(y = 0) = b2 = 0

I taking mean of products of Taylor series:

⇒ Reynolds-stress components have different near-wall slopes
O(y 2), O(y 3), O(y 4)

23 / 36

Plane channel flow
Wall roughness

Conclusion

Mean flow
Turbulence statistics

Near-wall asymptotics of Reynolds-stresses

I 〈u′u′〉 = O(y 2)

I 〈v ′v ′〉 = O(y 4)

I 〈w ′w ′〉 = O(y 2)

I 〈u′v ′〉 = O(y 3)

〈u′
i u

′
j 〉

u2
τ

DNS by Jimenez et al., Reτ = 950
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I this knowledge can be used for building consistent models
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Turbulent kinetic energy bugdet

Transport equation for statistically stationary channel flow

P −ε̃ +ν
d2k

dy2
−1

2

d

dy
〈v ′u′j u′j 〉 −1

ρ

d

dy
〈v ′p′〉 = 0

I II III IV V

I pseudo-dissipation
ε̃ ≡ ν〈u′i ,ju′i ,j〉

I peak production occurs in
buffer layer

I buffer layer exports energy

I dissipation not zero at wall,
balanced by visc. diffusion

b
u

d
g

et

DNS by Jimenez et al.,Reτ = 2000
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Length scales in plane channel flow

Observations from DNS by Hoyas & Jimenez (Reτ = 2000)
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I integral scale depends strongly on component and direction

→ turbulence structure highly anisotropic and inhomogeneous

26 / 36



Plane channel flow
Wall roughness

Conclusion

Mean flow
Turbulence statistics

Length scales in plane channel flow (2)

Definition of isotropic length scale

I L ≡ k3/2

ε
I no direct physical

interpretation

I but: often used in
turbulence models

I slope in log-layer:
L/h ∼ 2.8y/h

I in outer region:
L/h ≈ 0.8

k3/2

ε

1

h

DNS by Jimenez et al.,Reτ = 2000
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Flow over rough walls

I s is characteristic length of
protrusions

I roughness: s . h/20
(else: “obstacles”)

I details of flow in cavities is
complicated

I consequence: ansatz for mean
velocity modified

d〈u〉
dy

=
uτ
y
· Φ̄
(

y +,
y

h
, s+
)

s

h
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Logarithmic law for rough walls

Inner layer (y/h < 0.1):

lim
y/h→0

Φ̄
(

y +,
y

h
, s+
)

= ΦR

(
y +, s+

)
I integration for y + � 1:

u+ =
1

κ
log
(y

s

)
+ B̃(s+)

⇒ κ = 0.41 as for smooth wall

⇒ B̃ depends on s+

I “fully rough” for s+ & 70

B̃

fully rough: B̃ = 8.5

← smooth

s+

(Nikuradse’s data, from Pope “Turbulence”)
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Transitional roughness – influence of shape

Roughness function ∆U+

I equivalent form of log-law:

u+ = 1
κ log (y +) + B −∆U+

I with:
∆U+ = 1

κ log (s+) + B − B̃

I ∆U+ measures departure
from smooth-wall behavior

I measurements show:
friction can be decreased!

∆U+

(from Jimenez, Ann. Rev. Fluid Mech. 2004)
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ROUGH-WALL BOUNDARY LAYERS 183

Figure 3 Roughness function for several transitionally rough surfaces, as a function
of the Reynolds number based on the fully rough equivalent sand roughness.e, uni-
form sand (Nikuradse 1933);O, uniform packed spheres (Ligrani & Moffat 1986);N,
triangular riblets (Bechert et al. 1997);· · · · · ·, galvanized iron; – – – –, tar-coated cast
iron; — · —, wrought-iron (Colebrook 1939); ——, Equation 12.

Bradshaw (2000) revived the question, noting that a minimum transitional height
was unlikely for sparse roughness because the drag of the roughness elements in a
shear is proportional tok2 even in the low Reynolds number limit, and this should
be reflected in1U+. In recent years the matter has become topical because some of
the experiments undertaken to clarify the high Reynolds number behavior of flows
over smooth walls have surfaces that would be hydrodynamically smooth or rough
depending on which criterion is used (Barenblatt & Chorin 1998, Perry et al. 2001).
Figure 3 shows that there is no “true” answer, and that each surface has to be treated
individually.

The solid symbols in Figure 3 correspond to triangular riblets measured by
Bechert et al. (1997). The drag-reducing property of streamwise-aligned riblets
is a transitional roughness effect (Tani 1988). When they exceedk+ ≈ 10 they
loose effectiveness, and their behavior whenk+ À 1 is that of regulark-surfaces.
Their drag-reducing mechanism is reasonably well understood. Luchini, Manzo &
Pozzi (1991) showed that, in the limitk+ ¿ 1, the effect of the riblets is to impose
an offset for the no-slip boundary condition which is further into the flow for the

s+

◦ Nikuradse sand grains
O Ligrani & Moffat spheres
N Bechert et al. riblets
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Friction law for rough pipes

Considering pipe flow

I friction factor:

cf ≡ τw
ρu2

b/2
=

2u2
τ

u2
b

I using velocity defect law:

(U0 − ub)/uτ = 3/(2κ)

I using rough-wall log-law:

cf = 2

(
1

κ
log(R/s) + B̃(s+)− 3

2κ

)−2

4cf

(Nikuradse’s data, from Pope “Turbulence”)

smooth

Reb
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Problem
Outlook
Further reading

Summary

Main questions of the present lecture

I What is the general structure of wall-bounded flows?
I inner layer/outer layer: linear/log-law, defect law

I How does the presence of a solid boundary affect the
turbulent motion?

I stronger anisotropy than free shear flows

I wall has selective effect on velocity components

I What is the effect of wall roughness?
I shift of the log-law compared to smooth walls

Discussion of coherent structures → lecture 7
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Problem
Outlook
Further reading

Additional effects on wall-bounded flows

Important effects which are not treated here:

I imposed streamwise pressure gradient

I surface curvature

I system rotation

I geometrical complexities (secondary flows,. . .)
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Problem
Outlook
Further reading

Problem to be solved:

Determine the variation with wall-distance of the production P in
channel flow, valid for very small values of y .
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Problem
Outlook
Further reading

Outlook on next lecture: DNS as numerical experiments

What are the possibilities & limitations of numerical
simulations of the full Navier-Stokes equations?

Coherent structures in wall flows
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Further reading

I S. Pope, Turbulent flows, 2000
→ chapter 7

I H. Schlichting and K. Gersten, Grenzschicht–Theorie, 10th
edition, 2006
→ part D
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