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Summary of last lecture

Lecture 4 — Free shear flows

» How does a turbulent flow develop away from solid
boundaries?
» How can the equations be simplified for slow spatial
evolution?
» boundary layer approximation

» What is the evolution in the self-similar region?
» round jet: linear spreading, mean velocities ~ 1/x

» Turbulence structure in the round jet:

» turbulent kinetic energy budget

» crude approximation with uniform turbulent viscosity
» Small scales decrease with increasing Reynolds

» dissipation essentially independent of viscosity
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LECTURE 5

The scales of turbulent motion
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Questions to be answered in the present lecture

How are energy and anisotropy distributed among scales?

Which physical processes occur on each scale?
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The Richardson cascade

The energy cascade (Richardson 1922)

Conceptual image of energy & scales

» turbulence is composed of eddies of different sizes
> consider statistically stationary flow, very large Re = LU /v
» characteristic size: ¢, velocity: u(¢), timescale: 7(¢) = ¢/u(¥)

> largest eddies: ¢ = {y = O(L), up = u(lo) = O(urms) = O(U)

» eddies interact, transfer energy preferentially to smaller sizes

» for some size ¢ < ly: Rey = u({)-4/v = 0O(1)

— dissipation by molecular viscosity becomes important
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The Richardson cascade

The energy cascade (2)

Consequences of the concept

4 Q %jection of
¢ ] energy €
» ‘top-down’ process

> rate of energy transfer from h QOO@OO

2 3 2ty DQQOIOOOODDD || Fluxof
large scales: ug/T0 = ug/lo 7t caeosssscoomoosooscse | T

— dissipation scales as ug/éo

Dissipation of

[ et s e Nnergys
= dissipation determined by
energy |nput| (Frisch “Turbulence”, 1995)

= cascade process takes care of dissipating energy at the appropriate rate
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Local isotropy

Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

Kolmogorov's theory

Quantification of the cascade

» what is the size of the smallest scales?
» how do the scales u(¢) and 7 vary along the cascade?

» how does the range of scales depend on the Reynolds number?

Kolmogorov's theory

» provides scaling laws

» provides some measurable quantities
— can be verified in high Reynolds number experiments

» formulated in form of hypotheses
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Local isotropy
Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

Kolmogorov's hypotheses

Hypothesis of small-scale isotropy

At high Reynolds numbers, the motion of small scales
¢ < fg is statistically isotropic.

» directional bias & information about flow geometry

— lost along the cascade

= small-scale statistics should be universal
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Local isotropy
Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

Hypothesis 1: Small-scale isotropy

Loss of anisotropy due to repeated vortex stretching

Cartoon-like explanation Frequency of symbols

at each generation -
» vortex “stretching” o I
term: (w-V)u

» stretching in z
— gradients in x,y

» and soon ...

= isotropization after XYYEYEIXYIEXI XXy 2| 2 | =
repeated steps

(Bradshaw 1971)
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Local isotropy
Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

Hypothesis 2: Similarity of small scales

First similarity hypothesis

At high Reynolds numbers, the statistics of the small-scale motion
(¢ < £gr) have a universal form determined by v and e.

» Kolmogorov scales (from dimensional grounds):

n= (y3/5)1/4 T = (V/€)1/2 Uy = (y5)1/4

= recall: Re;, =nu,/v =1 — viscous effects important!

» scales decrease with large-scale Reynolds number:
n/lo ~ Re=3/* u,/ug ~ Re™Y*  1,/70 ~ Re71/?

> 1) decreases faster than u, — gradients increase
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Local isotropy

Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

Finite limit for dissipation at high Re

Experimental evidence from homogeneous-isotropic turbulence

direct numerical simulation

laboratory grid turbulence 2
1 T T T unfilled squares: Jimenez et al., forced
30F - filled diamonds: Wang et al., decaying
’ crosses: Wang et al., forced
unfilled diamonds: Yeung & Zhou, forced
€ ‘L'/u:l B + filled squares: Cao et al., forced
+ <e>L/u3
+
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(Sreenivasan 1984) 78

(Sreenivasan 1998)

= &l/ud has finite value O(1)
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Local isotropy
Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

Hypothesis 3: Inertial similarity

Second similarity hypothesis

At high Reynolds numbers, the statistics of motions in the range
lo > ¢ > n have a universal form determined by ¢ and ¢,
independent of v.

universal equilibrium range ! energy-containing
. o range
dissipation | inertial subrange I &
range

1 ! ! 1 1

d Cpy ler by L

> inertial subrange scales: u(¢) = (e0)'/3, 7, = (¢%/e)'/3
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Local isotropy
Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

Energy flux through the cascade

> rate of energy transfer through scale ¢ defined as 7 (/)
» determined by scales around /: T) ~u(l)?)ry=¢
= transfer rate 7 ({) is independent of ¢ !

» conceptual diagram of the cascade:

dissipation ¢ production P

I transfer 7 (¢) l

-—— — — o
1 1 |

n EDI KE/ fo L

dissipation range inertial subrange energy-containing range
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Local isotropy
Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

Predictions by Kolmogorov's theory

Second order velocity structure function (definitions)

> Dji(r,x,t) = ((ui(x +r,t) — ui(x, ) (uj(x + r, t) — uj(x, 1))

> related to: Rji(r,x,t) = (uj(x, t)uj(x +r,t)) (lecture 3)
> local isotropy: for |r| < L only components D;;, Dyn
U u o
——— — _o_l, D;; (longitudinal)
Uz, us Uz, us
L _r _ _ Dnn (transverse)
X X + eir

> in homogeneous turbulence with (u;) =0
from continuity: Dyy = Dy + %r@,DLL

= in this case: Dj(r, t) fully determined by Dy, (r, t)
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Local isotropy
Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

Second order velocity structure function (K41 results)

» second similarity hypothesis (inertial subrange):

o 2/3
statistics depend only on r, ¢ Dy = G (er) /
ast
o ¢ 4 c | |
¢ Qa/’qyi ‘— ™ ’ E_
g o S of
~ o o r
Q ;s ) OB
H e ~ c
Q :“ : Ll II?III Ll ||||||| Ll ||||||| L LLLLL Ll ||||
3F Q
05 T 15 3 25 3 r
|og(r) (boundary layer, Saddoughi & Veeravalli 1994)

(grid turbulence, Gagne & Hopfinger)
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Local isotropy
Kolmogorov’s 1941 theory Similarity hypotheses
Consequences of the theory

K41 results: the 4/5 law for isotropic turbulence

Result derived from Navier-Stokes

» derive transport equation for D;;
(involves 3rd order structure function Dy ;)

> invoke: local isotropy, negligible viscosity (inertial subrange)

= Kolmogorov's 4/5-law: Dii(r)=—%er

| c
o |

< 10° e, ]

\(U/ T T C .P‘+++

S I | PR ST | P by

~

5 10! 10° 10° 10*

r/n

(grid turbulence, Gagne 1987)
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Velocity spectra
Spectrum balance
Spectral view Summary

Spectral view of the cascade

Previous arguments were based on physical space view

Alternative — spectral space view:

» based upon Fourier transform

1. introduce spectral quantities

2. present consequences of Kolmogorov's theory
3.

discuss energy cascade in wavenumber space
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Velocity spectra
Spectrum balance
Spectral view Summary

Velocity spectrum tensor

Homogeneous turbulence

> definition: (cf. lecture 3)
spectrum tensor ®;; = transform of two-point correlation R;;

1o,
Pk, 1) = (%)3/ e~ Ry(r, 1) dr
Rjj(r,t) = / et" (K, t) dk
> setting r = 0: Rii(0,t) = (uju}) :/ ®;i(k, t)dr

= ®(K) is contribution from mode Kk to Reynolds stress
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Velocity spectra
Spectrum balance
Spectral view Summary

Energy spectrum function

Reduction of information contained in ®;

» sum diagonal components, integrate over directions of k:

E(r, t) = /OO %CD,-,-(K:, 0(|k| — k) dre

—0o0

» E(k) is real, non-negative, defined for k > 0

(0.8}
> k :/ E(k)dr contribution to TKE
0
> £ = / 2vuk?E(k)dk contribution to dissipation
0
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Velocity spectra
Spectrum balance
Spectral view Summary

Kolmogorov spectra

Scaling in the inertial subrange (n < ¢ < /(o)

> recall the 2/3 law: D;p = G (Er)2/3

> it is possible to relate Dy;(r) to spectrum function E(k)

= | E(k) = Cior€%/3575/3

» universal constant: C,,y = 1.5

(directly related to C,, value from measurements)

» confirmed in numerous experiments at high Reynolds number
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Velocity spectra
Spectrum balance
Spectral view Summary

Kolmogorov spectra - experimental confirmation

1D energy spectra — same scaling as corresponding 3D spectra

105%
e =N
10*F
10%F
102

10tk

10°F

Ei1, Ex

101

w2

103E
H H Wig e PRI R S S AR T
(boundary layer, Saddoughi & Veeravalli 1994) 10753 e e my 1ot 162

ki

(high Re jet flow, Champagne 1978)
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Velocity spectra
Spectrum balance
Spectral view Summary

A model spectrum

Pope (2000) proposes models spectrum

> valid over range of scales: E(x) = Cyol 52/3/43_5/31 fi (kL) f,,(kn)

Kolmogorov
.. 10°¢
> fi (kL) — energy-containing range 1% sope2
10°f
> tends to unity for large kL El'j 107}
1
» for small kL: E(k) ~ kP th ol
. . . . 10-]‘,
> f,(kn) — dissipation range: o2
- -3 | ! ! ! .
> tends to unity for small k7 T P B e S

» for large kn: KN

E(r) ~ exp(—frn) given Re, pp = 2
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Spectral view

Spectral behaviour of the large

Velocity spectra
Spectrum balance
Summary

scales

Energy-containing range

» non-universal behavior!

» 3D spectrum function more
informative than 1D (aliasing)

= consider grid turbulence
— approx. isotropic

oo 4
= E dk = —kL
| ) mdn = Sk

.
/8

o Comte-Bellot & Corrsin 1971, Rey = 60...70
—— model spectrum, Rey = 60, pg = 2
———— model spectrum, Rey = 1000, pg = 2

— - — model spectrum, Re) = 60, pgp = 4
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Spectral view

Velocity spectra
Spectrum balance
Summary

Spectral behaviour of the dissipation range

Dissipation range

» universal for different flows

» lin-log plot:
straight = exponential decay

> peak dissipation at ¢/n ~ 24

Vv grid-turbulence Comte-Bellot & Corrsin 1971, Rey = 60
o boundary layer, Saddoughi & Veeravalli 1994, Rey = 600

—— model spectrum, Re) = 600
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Velocity spectra
Spectrum balance
Spectral view Summary

Energy spectrum balance in homogeneous turbulence

4

OE(K) = Pu(k, t) — 0. T (k, t) —2vK?E(k, t)

TV TV

production spectral transfer  (jssipation ED(H)
sketch for high Reynolds no. flows

» production limited to @ €0 o)
energy-containing range A

Kgi Kpi K

» kv < KEl: () P %
8tE = Pr — a,%,];c 0

Kgi Kpi K

> K < KR < KpJ:
0=-0.7. | © T,

> kp < K: ’ e Ko 8
0 == —8,{]; —D (Pope “Turbulence’, 2000)
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Velocity spectra
Spectrum balance
Spectral view Summary

Summary of the lecture

The turbulent energy cascade

» hierarchy of eddies, downward transfer of energy

» dissipation determined by large scales, performed by small
scales

Kolmogorov's theory

» building block of turbulence research

> valuable results for small scales (e.g. —5/3 spectrum)

BUT: Problem of non-universality of large scales remains
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Velocity spectra
Spectrum balance
Spectral view Summary

Outlook on next lecture: Wall turbulence

What is the general structure of wall-bounded flows?

How does the presence of a solid boundary affect the turbulent
motion?

What is the effect of wall roughness?
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Velocity spectra
Spectrum balance
Spectral view Summary

Further reading

» S. Pope, Turbulent flows, 2000
— chapter 6

» U. Frisch, Turbulence, 1995
— chapters 6-8
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Velocity spectra
Spectrum balance
Spectral view Summary

Appendix
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Velocity spectra
Spectrum balance
Spectral view Summary

Shortcomings and refinements

Reynolds number dependence

spectral exponent in inertial subrange

171
16
15
141

13

12

R\

(Mydlarski & Warhaft 1998)

> define E(k) ~ kP
> exponent p approaches 5/3 only slowly with Reynolds
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Velocity spectra
Spectrum balance
Spectral view Summary

Shortcomings and refinements (2)

Higher-order statistics deviate from K41 theory

» nth order structure function

Dn(r) = <(ArU)n> al

» K41, dimensional arguments: & 2: g,gyf/f'*“g”‘
Dn(r) ~ (er)er Cm=n/3 AR

» n > 3: measurements deviate o - . "

— attributed to intermittency Ance | 1084
[ ] nselmet et al.

» refinements by Kolmogorov — k4

(1962) ———— refined similarity
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