Turbulenzmodelle in der Strömungsmechanik Turbulent flows and their modelling

Markus Uhlmann

Institut für Hydromechanik

www.ifh.uni-karlsruhe.de/people/uhlmann

WS 2008

The Richardson cascade Kolmogorov's 1941 theory Spectral view

Summary of last lecture

Lecture 4 – Free shear flows

- How does a turbulent flow develop away from solid boundaries?
- How can the equations be simplified for slow spatial evolution?
 - boundary layer approximation
- What is the evolution in the self-similar region?
 - round jet: linear spreading, mean velocities $\sim 1/x$
- Turbulence structure in the round jet:
 - turbulent kinetic energy budget
 - crude approximation with uniform turbulent viscosity
- Small scales decrease with increasing Reynolds
 - dissipation essentially independent of viscosity

The energy cascade (Richardson 1922)

The Richardson cascade Kolmogorov's 1941 theory

Spectral view

Kolmogorov's theory

Quantification of the cascade

- what is the size of the smallest scales?
- how do the scales $u(\ell)$ and τ_{ℓ} vary along the cascade?
- how does the range of scales depend on the Reynolds number?

Kolmogorov's theory

- provides scaling laws
- provides some measurable quantities
 - \rightarrow can be verified in high Reynolds number experiments
- formulated in form of hypotheses

Local isotropy Similarity hypotheses Consequences of the theory

Hypothesis 1: Small-scale isotropy

The Richardson cascade Kolmogorov's 1941 theory Spectral view

Local isotropy Similarity hypotheses Consequences of the theory

Hypothesis 2: Similarity of small scales

First similarity hypothesis

At high Reynolds numbers, the statistics of the small-scale motion $(\ell < \ell_{EI})$ have a universal form determined by ν and ε .

Kolmogorov scales (from dimensional grounds):

$$\eta \equiv \left(
u^3/arepsilon
ight)^{1/4} , \quad au_\eta \equiv \left(
u/arepsilon
ight)^{1/2} , \quad u_\eta \equiv \left(
uarepsilon
ight)^{1/4}$$

 \Rightarrow recall: $Re_\eta \equiv \eta \; u_\eta / \nu = 1 \rightarrow$ viscous effects important!

- ► scales decrease with large-scale Reynolds number: $\eta/\ell_0 \sim Re^{-3/4}$, $u_\eta/u_0 \sim Re^{-1/4}$, $\tau_\eta/\tau_0 \sim Re^{-1/2}$
- η decreases faster than $u_\eta \rightarrow$ gradients increase

500

 $\Rightarrow \varepsilon \ell / u_0^3$ has finite value $\mathcal{O}(1)$

0+0

100

(Sreenivasan 1998)

200

 R_{λ}

300

1.0

10

100

(Sreenivasan 1984)

Spectral view of the cascade

Previous arguments were based on physical space view

Alternative – spectral space view:

- based upon Fourier transform
- 1. introduce spectral quantities
- 2. present consequences of Kolmogorov's theory
- 3. discuss energy cascade in wavenumber space

Velocity spectra Spectrum balance Summary

Velocity spectrum tensor

Homogeneous turbulence

• <u>definition</u>: (cf. lecture 3) spectrum tensor Φ_{ii} = transform of two-point correlation R_{ii}

$$\Phi_{ij}(\boldsymbol{\kappa},t) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} e^{-l\boldsymbol{\kappa}\cdot\mathbf{r}} R_{ij}(\mathbf{r},t) \, \mathrm{d}\mathbf{r}$$
$$R_{ij}(\mathbf{r},t) = \int_{-\infty}^{\infty} e^{+l\boldsymbol{\kappa}\cdot\mathbf{r}} \Phi_{ij}(\boldsymbol{\kappa},t) \, \mathrm{d}\boldsymbol{\kappa}$$

setting
$$\mathbf{r} = 0$$
: $R_{ij}(0, t) = \langle u'_i u'_j \rangle = \int_{-\infty}^{\infty} \Phi_{ij}(\boldsymbol{\kappa}, t) d\boldsymbol{\kappa}$

 $\Rightarrow \Phi_{ij}(\kappa)$ is contribution from mode κ to Reynolds stress

Velocity spectra Spectrum balance Summary

Energy spectrum function

- recall the 2/3 law: $D_{LL} = C_2 (\varepsilon r)^{2/3}$
- it is possible to relate $D_{LL}(r)$ to spectrum function $E(\kappa)$

$$\Rightarrow E(\kappa) = C_{kol} \, \varepsilon^{2/3} \kappa^{-5/3}$$

universal constant: C_{kol} = 1.5
 (directly related to C₂, value from measurements)

confirmed in numerous experiments at high Reynolds number

The Richardson cascade Kolmogorov's 1941 theory Spectral view

Velocity spectra Spectrum balance Summary

Spectral behaviour of the large scales

Energy-containing range

- non-universal behavior!
- 3D spectrum function more informative than 1D (aliasing)
- $\Rightarrow \text{ consider } \underbrace{\text{grid turbulence}}_{\rightarrow \text{ approx. isotropic}}$

$$\int_0^\infty E(\kappa)/\kappa \,\mathrm{d}\kappa = \frac{4}{3\pi} k L_{11}$$

 $\circ\,$ Comte-Bellot & Corrsin 1971, $\mathit{Re}_{\lambda}\,=\,60\ldots70$

—— model spectrum, ${\it Re}_{\lambda}$ = 60, ${\it p}_0$ = 2

---- model spectrum, $Re_{\lambda}=$ 1000, $p_{0}=$ 2

—•— model spectrum, $Re_{\lambda}=$ 60, $p_{0}=$ 4

23 / 31

Velocity spectra Spectrum balance Summary

Spectral behaviour of the dissipation range

Dissipation range

- universal for different flows
- lin-log plot: straight = exponential decay
- peak dissipation at $\ell/\eta pprox 24$

▼ grid-turbulence Comte-Bellot & Corrsin 1971, Re_λ = 60
 ○ boundary layer, Saddoughi & Veeravalli 1994, Re_λ = 600
 — model spectrum, Re_λ = 600

Energy spectrum balance in homogeneous turbulence

Summary of the lecture

The turbulent energy cascade

- hierarchy of eddies, downward transfer of energy
- dissipation determined by large scales, performed by small scales

Kolmogorov's theory

- building block of turbulence research
- ▶ valuable results for small scales (e.g. -5/3 spectrum)

BUT: Problem of non-universality of large scales remains

The Richardson cascade Kolmogorov's 1941 theory Spectral view Velocity spectra Spectrum balance Summary

Appendix

Velocity spectra Spectrum balance Summary

Shortcomings and refinements (2)

