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Summary of last lecture

Lecture 4 – Free shear flows

I How does a turbulent flow develop away from solid
boundaries?

I How can the equations be simplified for slow spatial
evolution?

I boundary layer approximation

I What is the evolution in the self-similar region?
I round jet: linear spreading, mean velocities ∼ 1/x

I Turbulence structure in the round jet:
I turbulent kinetic energy budget
I crude approximation with uniform turbulent viscosity

I Small scales decrease with increasing Reynolds
I dissipation essentially independent of viscosity
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LECTURE 5

The scales of turbulent motion
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Questions to be answered in the present lecture

How are energy and anisotropy distributed among scales?

Which physical processes occur on each scale?
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The energy cascade (Richardson 1922)

Conceptual image of energy & scales

I turbulence is composed of eddies of different sizes

I consider statistically stationary flow, very large Re ≡ LU/ν
I characteristic size: `, velocity: u(`), timescale: τ(`) ≡ `/u(`)

I largest eddies: ` = `0 = O(L), u0 ≡ u(`0) = O(urms) = O(U)

I eddies interact, transfer energy preferentially to smaller sizes

I for some size `� `0: Re` ≡ u(`) · `/ν = O(1)

→ dissipation by molecular viscosity becomes important
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The energy cascade (2)

Consequences of the concept

I ‘top-down’ process

I rate of energy transfer from
large scales: u2

0/τ0 = u3
0/`0

→ dissipation scales as u3
0/`0

⇒ dissipation determined by
energy input! (Frisch “Turbulence”, 1995)

⇒ cascade process takes care of dissipating energy at the appropriate rate
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Local isotropy
Similarity hypotheses
Consequences of the theory

Kolmogorov’s theory

Quantification of the cascade

I what is the size of the smallest scales?

I how do the scales u(`) and τ` vary along the cascade?

I how does the range of scales depend on the Reynolds number?

Kolmogorov’s theory

I provides scaling laws

I provides some measurable quantities

→ can be verified in high Reynolds number experiments

I formulated in form of hypotheses
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Kolmogorov’s hypotheses

Hypothesis of small-scale isotropy

At high Reynolds numbers, the motion of small scales
`� `0 is statistically isotropic.

I directional bias & information about flow geometry

→ lost along the cascade

⇒ small-scale statistics should be universal

8 / 31



The Richardson cascade
Kolmogorov’s 1941 theory

Spectral view

Local isotropy
Similarity hypotheses
Consequences of the theory

Hypothesis 1: Small-scale isotropy

Loss of anisotropy due to repeated vortex stretching

Cartoon-like explanation

I vortex “stretching”
term: (ω · ∇)u

I stretching in z
→ gradients in x ,y

I and so on . . .

⇒ isotropization after
repeated steps (Bradshaw 1971)
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Hypothesis 2: Similarity of small scales

First similarity hypothesis

At high Reynolds numbers, the statistics of the small-scale motion
(` < `EI ) have a universal form determined by ν and ε.

I Kolmogorov scales (from dimensional grounds):

η ≡ (ν3/ε
)1/4

, τη ≡ (ν/ε)1/2 , uη ≡ (νε)1/4

⇒ recall: Reη ≡ η uη/ν = 1 → viscous effects important!

I scales decrease with large-scale Reynolds number:
η/`0 ∼ Re−3/4 , uη/u0 ∼ Re−1/4 , τη/τ0 ∼ Re−1/2

I η decreases faster than uη → gradients increase
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Finite limit for dissipation at high Re

Experimental evidence from homogeneous-isotropic turbulence

laboratory grid turbulence

Downloaded 17 Sep 2008 to 129.13.72.153. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

(Sreenivasan 1984)

direct numerical simulation

yond someRl . However, the numerical value ofD` is not
the same in the two groups. To compare them meaningfully
with experiments,4 the scalesL andu used there have to be
redefined slightly. The redefinition leads toD`'0.73 for
square grids of round bars, and is in rough agreement with
the D` for the upper curve in Fig. 1. It was noted in Ref. 4
that D` assumes different values for grids of different con-
figurations, especially for the active grids of Gad-el-Hak and
Corrsin.10

Yeung and Zhou used a stochastic forcing confined to
the lowest two or three wavenumber shells, while Wang
et al. and Caoet al. maintain the energy of a few lowest
modes according to thek25/3 energy spectrum. It is hearten-
ing to note that the forced data of Wanget al. and of Yeung
and Zhou agree with each other, but one cannot dismiss the
fact that they both differ from the forced calculations of
Jimenezet al. and the decay data of Wanget al. The former
maintained the energy peak essentially atk51, and intro-
duced negative viscosity fork,3 in order to compensate for
the energy decay. In all the forced cases, it might be said that
the resolution of the large-scale is a major factor: there is no
perceptible gap between the large-scale and the box-size.
The energy in the decay data of Wanget al. did not peak at
the lowest wavenumber but was shifted to the right, suggest-
ing that the large-scale resolution might be better. Yet, the
decay data agree with one set of forced data—though it
should be said that there are only threeRl values for the
former, and that they do not totally preclude the possibility
of further decrease with increasingRl— but not with the
other two. It is not clear why this is so.

Despite this lack of clarity, the principal message of Fig.
1 is thatD asymptotes to a constant value, but thatD` can

perhaps be manipulated moderately—even in isotropic
turbulence—by adjusting in some manner the forcing
scheme or the large structure. Some preliminary calculations
of Juneja~private communication! suggest that the same de-
gree of manipulation might also be possible by varying the
initial conditions. At present, we do not know enough to say
precisely how this can be done in a controlled way. To re-
solve this issue, one ought to implement systematic changes
in the forcing scheme, the large-scale structure, and initial
conditions. That the large structure does influence the con-
stant D` is clear from experiments in homogeneously
sheared flows; in Ref. 5, it is shown thatD`5D`(S), S
being a non-dimensional shear parameter.

One is now left with the question as to whether the na-
ture of forcing at the large scale, and the resulting differences
in the structure of the large scale, affect other aspects of
turbulence as well. We have examined various small-scale
statistics from the sources cited here. There seems to be no
perceptible difference in this regard. But the scaling
range—as determined, for example, by Kolmogorov’s 4/5-
ths law11—does depend on the nature of forcing: it can be
extended or contracted depending on how one deals with the
energy level of the lowest few wavenumbers.
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⇒ ε`/u3
0 has finite value O(1)
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Hypothesis 3: Inertial similarity

Second similarity hypothesis

At high Reynolds numbers, the statistics of motions in the range
`0 � ` � η have a universal form determined by ` and ε,
independent of ν.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqq

inertial subrange

η `EI `0 L`DI

universal equilibrium range energy-containing

dissipation
range

range

I inertial subrange scales: u(`) = (ε`)1/3, τ` = (`2/ε)1/3
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Energy flux through the cascade

I rate of energy transfer through scale ` defined as T (`)

I determined by scales around `: T (`) ∼ u(`)2/τ` = ε

⇒ transfer rate T (`) is independent of ` !

I conceptual diagram of the cascade:

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqq

η `EI `0 L`DI

dissipation range inertial subrange energy-containing range

transfer T (`)

production Pdissipation ε
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Predictions by Kolmogorov’s theory

Second order velocity structure function (definitions)

I Dij(r, x, t) ≡ 〈(ui (x + r, t)− ui (x, t)) (uj(x + r, t)− uj(x, t))〉
I related to: Rij(r, x, t) = 〈ui (x, t)uj(x + r, t)〉 (lecture 3)

I local isotropy: for |r| � L only components DLL, DNN

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqq
ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp
ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp DNN (transverse)

DLL (longitudinal)
u1u1

u2,u3 u2,u3

r

x x + e1r
I in homogeneous turbulence with 〈ui 〉 = 0

from continuity: DNN = DLL + 1
2 r∂r DLL

⇒ in this case: Dij(r, t) fully determined by DLL(r , t)
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Second order velocity structure function (K41 results)

I second similarity hypothesis (inertial subrange):

statistics depend only on r , ε DLL = C2 (εr)2/3

lo
g

(D
L
L
)

log(r)

(grid turbulence, Gagne & Hopfinger)

D
L
L
/(
εr

)2
/

3
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Figure 6.5: Second-order velocity structure functions measured in a

high-Reynolds-number turbulent boundary layer. The horizontal

lines show the predictions of the Kolmogorov hypotheses in the

inertial subrange, Eqs. (6.33) and (6.34). (From Saddoughi and

Veeravalli (1994).)

1

r

(boundary layer, Saddoughi & Veeravalli 1994)
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K41 results: the 4/5 law for isotropic turbulence

Result derived from Navier-Stokes

I derive transport equation for DLL

(involves 3rd order structure function DLLL)

I invoke: local isotropy, negligible viscosity (inertial subrange)

⇒ Kolmogorov’s 4/5-law: DLLL(r) = −4
5 εr

D
L
L
L
/

(ε
r)

r/η

(grid turbulence, Gagne 1987)
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Spectral view of the cascade

Previous arguments were based on physical space view

Alternative – spectral space view:

I based upon Fourier transform

1. introduce spectral quantities

2. present consequences of Kolmogorov’s theory

3. discuss energy cascade in wavenumber space

17 / 31

The Richardson cascade
Kolmogorov’s 1941 theory

Spectral view

Velocity spectra
Spectrum balance
Summary

Velocity spectrum tensor

Homogeneous turbulence

I definition: (cf. lecture 3)
spectrum tensor Φij = transform of two-point correlation Rij

Φij(κ, t) =
1

(2π)3

∫ ∞
−∞

e−Iκ·rRij(r, t) dr

Rij(r, t) =

∫ ∞
−∞

e+Iκ·rΦij(κ, t) dκ

I setting r = 0: Rij(0, t) = 〈u′iu′j〉 =

∫ ∞
−∞

Φij(κ, t) dκ

⇒ Φij(κ) is contribution from mode κ to Reynolds stress
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Energy spectrum function

Reduction of information contained in Φij

I sum diagonal components, integrate over directions of κ:

E (κ, t) =

∫ ∞
−∞

1

2
Φii (κ, t)δ(|κ| − κ) dκ

I E (κ) is real, non-negative, defined for κ ≥ 0

I k =

∫ ∞
0

E (κ) dκ contribution to TKE

I ε =

∫ ∞
0

2νκ2E (κ) dκ contribution to dissipation
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Kolmogorov spectra

Scaling in the inertial subrange (η � `� `0)

I recall the 2/3 law: DLL = C2 (εr)2/3

I it is possible to relate DLL(r) to spectrum function E (κ)

⇒ E (κ) = Ckol ε
2/3κ−5/3

I universal constant: Ckol = 1.5

(directly related to C2, value from measurements)

I confirmed in numerous experiments at high Reynolds number
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Kolmogorov spectra - experimental confirmation

1D energy spectra – same scaling as corresponding 3D spectra

E
1

1
ε−

2
/

3
κ

5
/

3
1
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Figure 6.17: Compensated one-dimensional spectra measured in a tur-

bulent boundary layer at Rλ ≈ 1, 450. Solid lines, experimental

data Saddoughi and Veeravalli (1994); dashed lines, model spec-

tra from Eq. (6.246); long dashed lines, C1 and C ′
1 corresponding

to Kolmogorov inertial-range spectra. (For E11, E22 and E33 the

model spectra are for Rλ = 1, 450, 690 and 910, respectively, cor-

responding to the measured values of 〈u2
1〉, 〈u

2
2〉 and 〈u2

3〉.)

9

k1η

(boundary layer, Saddoughi & Veeravalli 1994)

E
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1
,

E
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2

k1

(high Re jet flow, Champagne 1978)
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A model spectrum

Pope (2000) proposes models spectrum

I valid over range of scales: E (κ) = Ckol ε
2/3κ−5/3︸ ︷︷ ︸

Kolmogorov

fL(κL) fη(κη)

I fL(κL) – energy-containing range

I tends to unity for large κL
I for small κL: E (κ) ∼ kp0

I fη(κη) – dissipation range:
I tends to unity for small κη
I for large κη:

E (κ) ∼ exp(−βκη)
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Figure 6.13: Model spectrum (Eq. 2.246) for Rλ = 500 normalized by

the Kolmogorov scales.

5

given Re, p0 = 2
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Spectral behaviour of the large scales

Energy-containing range

I non-universal behavior!

I 3D spectrum function more
informative than 1D (aliasing)

⇒ consider grid turbulence
→ approx. isotropic

I
∫ ∞

0
E (κ)/κ dκ =

4

3π
kL11
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Figure 6.18: Energy spectrum function in isotropic turbulence nor-

malized by k and L11. Symbols, grid-turbulence experiments

of Comte-Bellot and Corrsin (1971): ©, Rλ = 71; ¤, Rλ =

65;4, Rλ = 61. Lines, model spectrum, Eq. (6.246): solid, p0 = 2,

Rλ = 60; dashed, p0 = 2, Rλ = 1, 000; dot-dash p0 = 4, Rλ = 60.

10

◦ Comte-Bellot & Corrsin 1971, Reλ = 60 . . . 70

—— model spectrum, Reλ = 60, p0 = 2

– – – – model spectrum, Reλ = 1000, p0 = 2

— ·— model spectrum, Reλ = 60, p0 = 4
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Spectral behaviour of the dissipation range

Dissipation range

I universal for different flows

I lin-log plot:
straight = exponential decay

I peak dissipation at `/η ≈ 24
H grid-turbulence Comte-Bellot & Corrsin 1971, Reλ = 60

◦ boundary layer, Saddoughi & Veeravalli 1994, Reλ = 600

—— model spectrum, Reλ = 600
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Energy spectrum balance in homogeneous turbulence

∂tE (κ) = Pκ(κ, t)︸ ︷︷ ︸
production

− ∂κTκ(κ, t)︸ ︷︷ ︸
spectral transfer

−2νκ2E (κ, t)︸ ︷︷ ︸
dissipation ≡D(κ)

I production limited to
energy-containing range

I κ < κEI :
∂tE = Pκ − ∂κTκ

I κEI < κ < κDI :
0 = −∂κTκ

I κDI < κ:
0 = −∂κTκ −D

sketch for high Reynolds no. flows
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Figure 6.28: For homogeneous turbulence at very high Reynolds num-

ber, sketches of (a) the energy and dissipation spectra (b) the

contributions to the balance equation for E(κ, t) (Eq. 6.284), and

(c) the spectral energy transfer rate.
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(Pope “Turbulence’, 2000)

25 / 31

The Richardson cascade
Kolmogorov’s 1941 theory

Spectral view

Velocity spectra
Spectrum balance
Summary

Summary of the lecture

The turbulent energy cascade

I hierarchy of eddies, downward transfer of energy

I dissipation determined by large scales, performed by small
scales

Kolmogorov’s theory

I building block of turbulence research

I valuable results for small scales (e.g. −5/3 spectrum)

BUT: Problem of non-universality of large scales remains

26 / 31



The Richardson cascade
Kolmogorov’s 1941 theory

Spectral view

Velocity spectra
Spectrum balance
Summary

Outlook on next lecture: Wall turbulence

What is the general structure of wall-bounded flows?

How does the presence of a solid boundary affect the turbulent
motion?

What is the effect of wall roughness?
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Further reading

I S. Pope, Turbulent flows, 2000
→ chapter 6

I U. Frisch, Turbulence, 1995
→ chapters 6-8
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Appendix
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Shortcomings and refinements

Reynolds number dependence

spectral exponent in inertial subrange
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Figure 6.29: Spectrum power-law exponent p (E(κ) ∼ κ−p) as a func-

tion of Reynolds number in grid turbulence: symbols, experimental

data of Mydlarski and Warhaft (1998); dashed line, p = 5
3; solid

line, empirical curve p = 5
3 − 8R

−3
4

λ .
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(Mydlarski & Warhaft 1998)

I define E (κ) ∼ κ−p

I exponent p approaches 5/3 only slowly with Reynolds
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Shortcomings and refinements (2)

Higher-order statistics deviate from K41 theory

I nth order structure function
Dn(r) ≡ 〈(∆r u)n〉

I K41, dimensional arguments:
Dn(r) ∼ (εr)ζn ζm = n/3

I n > 3: measurements deviate
→ attributed to intermittency

I refinements by Kolmogorov
(1962)
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Figure 6.31: Measurements (symbols) compiled by Anselmet et

al. (1984) of the longitudinal velocity structure function exponent

ζn in the inertial subrange, Dn(r) ∼ rζn. The solid line is the

Kolmogorov (1941) prediction, ζn = 1
3n : the dashed line is the

prediction of the refined similarity hypothesis, Eq. (6.323) with

µ = 0.25.

23

• Anselmet et al. 1984

—— K41

– – – – refined similarity
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