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Summary of last lecture

Lecture 3 — Statistical description of turbulence

» How do we compute and analyze a turbulent flow statistically?

» Part |: What are the basic mathematical tools?

» random variables, processes, fields
> two-time/two-point correlations
» Fourier space analysis

» Part |I: What are the averaged equations?

» Reynolds decomposition and averaging
» closure problem, turbulent viscosity
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LECTURE 4

Free shear flows
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Questions to be answered in the present lecture

How does a turbulent flow develop away from solid boundaries?

How can the equations be simplified for slow spatial evolution?

What is the evolution in the self-similar region?

What is the turbulence structure in a plane jet?
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Types of free shear flows

Flows developing far from solid boundaries

» wake

> jet

» mixing layer
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Evolution of a round jet

The round jet

Re = 3000

Re = 13000
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Evolution of a round jet

Configuration and coordinate system

Steady round jet x U

» quiescent surroundings
> nozzle diameter d
> exit velocity U,

— Reynolds: Re = U,d/v

» statistically stationary
& axisymmetric flow

*
—_— Uy jUJ—__ Uy —-—
/

mixing layer

> initial development (20d)
then self-similar

mixing layer

7/32

Evolution of a round jet

Mean velocity and self-similarity

Observations from experiments

> mean axial velocity (u(x,r)) 02

— velocity decays on axis

. | Wy
& jet spreads radially

» profile shape remains similar o

» define centerline velocity:
Uo(x) = (u(x,0))

> define jet half width ry5(x): oo
(u(x, ri2)) = Uo(x)/2 rld

(Re = 95500, Hussein et al. 1994)

x/d = 100

20

o
— -/
(]
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Evolution of a round jet

Mean velocity and self-similarity (2)

Observations from experiments

» scaling of radial coordinate:
é.Er/rl/Q 1.0pn g
» scaling of velocity: ) s

(&) = (u(x,r))/Uo Y .

— profiles collapse 05 N

» spreading rate S: N
rij2(x) = S(x = ) ®
> velocity decay: 00 | oo,

Uo(X) =B-d- UJ/(X — XO) 0.0 1.0 2,.0

s

— local Reynolds is constant!
Reo(X) = I’1/2Uo/l/

(Re = 10%, Wygnanski & Fiedler 1969)
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Evolution of a round jet

Reynolds stresses

Observations from experiments

0.10
» coordinate system: [

x=(x,r,0), u=(u,v,w) Mo.os_

» due to symmetry: U% 0.06
Il — L ;
W) = ) = (vwhy=0 |
W'y (u'V') 0 002

< / /> <V/ /> 0 |
0 0 (w'w') 000l

0.0

> self-similarity of (ufuj’->/U§

» significant anisotropy (Hussein et al. 1994)
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Evolution of a round jet

Reynolds stresses

Observations from experiments

» shear stress can be written:

o{u) A
T or

(u'v') = —v
0.02]

» positive eddy viscosity vt

> self-similarity: 001y

vr(x,r)

Uo(x) r1/2(x) *000 10 I 20

vr(r) =

= plateau across Jet (Hussein et al. 1994)
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Boundary layer approximation

Navier-Stokes equations in cylindrical coordinates

Instantaneous equations

OxU + %8,(rv) + %%W = 0

1
8tu—|—u8Xu—|—v8,u—|—%89u = —— Xp—|—1/V2u
p
2 1 2
OtV + uOyv + v@,v+ﬂ(99v—w— = ——8rP—|—l/(V2v—12——289W)
r r P r r
w VW 1 5 w 2
Oew + udxw + vorw + —pw+ — = ——hp+v | Vw—— + 50yv
r r rp r r
with:

1 1
v2 — 6xx + ;8rr8r + ﬁ(‘)GO
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Boundary layer approximation

Reynolds-averaged Navier-Stokes in cylindrical coordinates

Averaged equations

» non-swirling, statistically stationary & axisymmetric

1
0 = O (u)+ ;8r(r(v>)
Dé? _ —%8X<p> o (i) — %8,(r<u’v’>) +ov2(u)
B !t
B = 20 - 0wy — o (v +
v
+v (V2<v> — <r_2>)

.. D

with: — = 9; + (u)0x + (v)0,
Dt 13/32

Boundary layer approximation

Boundary layer approximation

Applicable to flows with slow spatial evolution
» small streamwise gradients: 0y ~ 1/L

> large cross-stream variation: 0, ~ 1/0

with L > ¢

=- simplification of Navier-Stokes equations

Examples:

> free shear flows (jet, wake, mixing layer)

» wall-bounded flows (boundary layer)
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Boundary layer approximation

Boundary layer equations for round jet

Perform order-of-magnitude analysis
» U, V are reference velocities

» continuity equation:
1
v r

A o)

» balance of the terms:

Vo~ =2
L

= reference velocity in y-direction: 1
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Boundary layer approximation

Boundary layer equations for round jet (2)

Radial momentum equation
term order O(-) O(+), divided by U?§/L?> dominant
0 (v) 0 (stationary) 0
+(u)Ox (V) UV/L = U?§/L? 1
+{v)O,{v) V2/6 = U?5/L? 1
= —20:(p) Ap/(po) Ap,L?/(pU?5?) .
—8X<U,V/> ng/L R12L/(U25)
—39,(r{(v'v')) Rx2 /0 Ry L2 /(U?52)
—|—%<W/W/> R33/(5 R33L2/(U252)
+10x (V) vV /12 =vUs/L3 1/Re
+110,(ro (v)) vV /6% = vU/(SL) AL
+1% 0o (V) 0 (axisymmetric) 0
A vV /62 = vU/(LS) L
= %0r<p> +19,(r(v'V)) = 2 (w'w') = 0
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Boundary layer approximation

Boundary layer equations for round jet (3)

Obtaining the streamwise pressure gradient
> integrate the approximate radial momentum equation:

B) )y [T (00 0

p p r' r'

l B ldﬂ - . /oo <V/V/> - <W/W/> /
p@x(p> = dx Ox(V'V') 4 O r " > dr

» neglecting streamwise gradients of Reynolds stresses:

d
Dy (p) ~ =0

~ dx
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Boundary layer approximation

Boundary layer equations for round jet (4)

Streamwise momentum equation

term order O(-) O(+), divided by U?/L  dominant
O (u) 0 (stationary) 0
+(u) Oy (u) U?/L 1 o
+{v)0,(u) VU/§ = U?/L 1 .
- _%ax P> APx/(PL) APX/(IOU2) °
—8X<U/U/> R11/L R11/U2
—%&(r(u’v’)) R12/5 R]_QL/(U25) o
+v0x (U vU/L? 1/Re
+v20,(rd,(u)) U/ e
+v50p9(u) 0 (axisymmetric) 0

= (Wx(u) + (V)0 {u) = = 50x(p) — 7O (r(uV'))
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Boundary layer approximation

Boundary layer equations for round jet (5)

o)+ Wars) = B Ly )

P r

Using the BL approximation:

» it can be shown that self-similarity implies:

1

(x — x0)
yp ~ X=X

U ~

— consistent with experimental observations (cf. above)
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Boundary layer approximation

Closure of equations in BL approximation

Assuming a uniform turbulent viscosity

» define —(u'v') = v70,(u) o
> experiments show similarity: o
vr(x,r) = rp(x)Uo(x)07(r)  Uoost

» U1 ~ 0.028 across jet 04f

— assume DT = cst. 02f

\4

BL equations closed

1 I
0.0 1.0 / 2.0
¥ rl/z

= reasonable prediction of (u)
(disagreement near edge)

vT =cst approx. vs. Hussein et al. 1994
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Energy budget

Kinetic energy equation

Instantaneous kinetic energy

> definition: Ej(x,t) = su-u

> transport equation (cf. lecture 2):
DE

D = (Wip/p)j+ (2vuiSy) j — 2v5;S;

Mean kinetic energy

» decomposition:

E)= S+ o)
S—— N——

=F =k
(due to mean flow)  (due to turbulence)
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Energy budget

Kinetic energy of mean flow and turbulence

Transport equations

OE + () E + {un)(ulul) + () (p) /p — 20(u)5;)

1
ouk-+ ({3 ututa) + (o) o~ 2010t )
7.]

: ) — 1,/ N

> production term: P = —(uju;) (uj)
— sink for E, source for k — exchange term!
» dissipation due to mean flow: & = 2v5;5;

> dissipation due to turbulence: e = 2v(S;;S};)
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Energy budget

Scaling of dissipation

Round jet flow

> considering self-similarity of (u), (uju7)

» production term (BL approximation) scales as:

(u'v') 2

7D/(L/g/rl/z) ~ _770&<u>
0

— turbulent dissipation will also scale as:

525/(U3/r1/2)

= dissipation defined as 2v(s};s;;), but found independent of v/!

» finer scales at higher Re — higher gradients s,fj
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Energy budget

Finer scales with increasing Reynolds

Re =2-10° (Brown & Roshko 1974)
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Energy budget

Kolmogorov scales

Why is dissipation independent of the value for viscosity?

» define characteristic scales of smallest turbulent motion:
_(.3,\1/4 _ 1/2 _ 1/4

n= (1/ /z-:) . T = (v/e) / , Uy = (ve) /

> Kolmogorov-scale Reynolds number: Re, =nu,/v =1

> length scale decreases with Reynolds: 7/r;/» = /-'\’eo_3/4 g-1/4
— compensates changes in viscosity

» more details on scaling in lecture 5
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Energy budget

Turbulent kinetic energy budget

Observations from experiments

0.02 —
» mean-flow convection: ] Production
........... Lo~ Mean-flow
- [ 5 i
( <U J > k ) J & e convection

» turbulent transport: o NN
1 0.00 P

~ (Bupupup) + (up') /o B
—21/(u’-5{-)) _ % 001

Turbulent
transport

i~

p Dissipation

» production: P

—0.02 I ] ' I 1

rlr, 2

» dissipation: —¢

(Panchapakesan & Lumley 1993)
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Energy budget

Comparison of time scales in turbulent free shear flow

Round jet data

» reference scale:

70 = 2/ Uo
» mean shear:
7s = 1/0,(U)
» turbulence production:
T = /(/73
» turbulence dissipation:
7. = k/e
» mean “flight time"” from virtual origin:
T)= %X/Uo

— turbulence is long-lived

T0/70 =1
Ts/T0 ~ 1.7
/T ~ 6
T /70 =~ 4.5

’fj/7b ~ 5.3
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Energy budget

Other canonical free shear flows

Plane jet

Mixing layer

Plane or axisymmetric wake

Homogeneous shear flow

Homogeneous-isotropic flow
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Energy budget

Summary

Main questions of the present lecture

» How does a turbulent flow develop away from solid
boundaries?
» How can the equations be simplified for slow spatial
evolution?
» boundary layer approximation
» What is the evolution in the self-similar region?
» round jet: linear spreading, mean velocities ~ 1/x

» Turbulence structure in the round jet:

» turbulent kinetic energy budget
» crude approximation with uniform turbulent viscosity
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Energy budget

Problem

Derive the formula for the mean “flight time” of a fluid particle on
the round jet axis, measured from the virtual origin xo to a position
x. (Answer: 7; = $x/Up)
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Energy budget

Outlook on next lecture: The scales of turbulence

How are energy and anisotropy distributed among scales?

Which physical processes occur on each scale?
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Energy budget

Further reading

» S. Pope, Turbulent flows, 2000
— chapter 5

» H. Tennekes and J.L. Lumley, First Course in Turbulence, 1972
— chapter 5
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