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Schedule
1  General introduction to turbulent flows  20.10.
2  Equations of fluid motion 27.10.
3  Statistical description of turbulence 10.11.
4 Free shear flows 17.11.
5  The scales of turbulent motion 24.11.
6  Wall-bounded shear flows 1.12.
7 DNS as numerical experiments 8.12.
8  Introduction to RANS modelling 15.12.
9  k—¢ and other eddy viscosity models 12.1.
10 Reynolds-stress transport models 19.1.
11 Boundary conditions and wall treatment  26.1.
12 Algebraic stress models 2.2.
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Summary of last lecture

Lecture 2 — Equations of fluid motion

» How can the fluid motion be described mathematically?
» Navier-Stokes equations (momentum + continuity)
» alternatively: vorticity equation
= energy, enstrophy equations

» What are the transformation properties of the
conservation laws?

> Re similarity, rotation/reflection, Galilean invariance
» NO time reversal, Coriolis in rotating frame
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LECTURE 3

Statistical description of turbulence

421




Questions to be answered in the present lecture

How do we compute and analyze a turbulent flow statistically?

Part |: What are the basic mathematical tools?

Part |I: What are the averaged equations?
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The need for a statistical description

Laminar flow

> velocity field U(x, t) can be determined with accuracy

Turbulent flow

» velocity field U(x, t) is random
» perturbations in boundary/initial conditions are unavoidable
» equations are extremely sensitive at high Reynolds

= aim can only be a statistical description

> a posteriori statistics — data analysis
> a priori statistics — turbulence modelling
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Random variables, processes and fields Random variables
Random processes
Random fields

Random variables

Consider an experiment where a random variable u is measured

> probability of event B = {u < v}
p=PB)=Plu<w}, 0<p<l1
» “CDF" — cumulative distribution function
F(V)=P{u< V}

F(—o0) =0, F(4+00)=1, F(Vp)>F(Vy) if V>V,
» “PDF" — probability density function

f(V)EdI;(VV), F(V) >0, /_+oof(V)dV:1
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Random variables, processes and fields Random variables
Random processes
Random fields

Means and moments

» the mean of a random variable u
400
(uy = / VF(V)dVv

» fluctuation of u

» nth moment of u
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Random variables, processes and fields Random variables
Random processes
Random fields

Example probability distribution function

Normal (Gauss) distribution

» with standard deviation o, mean pu:

F(V) = J\}% exp <—%)

> standardized form, with o = (v — p)/o:

A ]_ FAS ].

F(V) = —V?/2), F(V) =2 (1+erf(V/V2
(V)= o (-V2/2) . F(V) =5 (L+ef(v/v2))
vy . F(V) .
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Random variables, processes and fields Random variables
Random processes
Random fields

Actual PDFs found in turbulent flow

In general: turbulent quantities NOT Gaussian distributed!

10°%
1
Example: )10
» atmospheric boundary 102
layer
PDF "]
» high Re
. . . . 107 2
» axial velocity derivative SR
. 13 . n _5;::;:()‘
= slowly decaying “tails Y™ e 4 o 2

OxU (norma4lizec8|)

van Atta & Chen (1970)
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Random variables, processes and fields Random variables
Random processes
Random fields

Joint random variables

» multiple random variables are described jointly
» definitions analogous to single random variable

» cumulative distribution function of uy, w»:
F12(V1, V2) = P{Ul < Vl, ur < VQ}
» “JPDF" — joint probability density function of uq, u»:

82

Fi2(V1, V2)

Vie rVop
P{Via < u1 < Vip, Vos < p < Vop} = / fia(V1, Vo)dVi d Vs,
Vla VZa
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Random variables, processes and fields Random variables
Random processes
Random fields

JPDF & covariance

scatter plot — isocontours of JPDF

the example shows two random
variables uy, ur with:

> (u1) =2, (uz) =1 ,
> (uyuy) =1, (vhub) =5/16 R
> p12 =1/V5 4

(from Pope, “Turbulence™)

» covariance:
oo

i = [ T (Vi — (i) (Va — ()i Va, Va)dVad Vs

—0o0

> correlation coefficient: p1p = (ujuh)//(ujul)(uyub)
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Random variables, processes and fields Random variables
Random processes
Random fields

Random processes

Describes a time-dependent random variable u(t)
» one-time CDF and PDF of random process:

dF(V,t)

F(V,t) = P{u(t)< V}, f(V;t) v,

— no information on time correlation!

> define N-time joint CDF of u(t):
FN(Vl, t1; Vo, to; .. ) = P{U(tl) < Vi; u(t2) < Vo:i...; U(t/\/) < VN}
» statistically stationary process:

FN(Vl, b+ T; Vo, +T;.. ) = FN(Vl, ti; Vo, to; .. )
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Random variables, processes and fields Random variables
Random processes

Random fields

Statistically stationary random process

4.0 0.08

0.06

var(U)
10.04

I example:

Pope, “Turbulence”

» definition of a two-time autocorrelation function:

p(s) = (U (1) u'(t + ) /(U (t)%),  p(0) =1, |p(s)| < 1

= correlation coefficient of process between t and t + s

(0.8}
> integral time scale: T :/ p(s)ds
0
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Random variables, processes and fields Random variables
Random processes
Random fields

Random fields

Time- and space-dependent vector field u(x, t)

» one-point, one-time JCDF, JPDF

O3F(V,x, t)
F(V,x,t) = P{uj(x,t Vi,i=1,2,3}, f(V;x,t)= L
(Vox ) = Plulx,t) < Vi = 12,3}, F(Vix 1) = o)
» mean value:
(u(x, t)) = / VF(V,x,t)dVidVod Vi3
» averaging commutes with differentiation:
. 8u; __8<u0
(Bes) = 00lu) - (500 = 5
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Random variables, processes and fields Random variables
Random processes
Random fields

Statistical stationarity and homogeneity

Statistics invariant in time = statistically stationary u(x, t)

Statistics invariant in space = statistically homogeneous

» (u) uniform in space

Statist. homogeneous u’(x, t) = homogeneous turbulence

> 0;(uj) # 0, but uniform in space

» homogeneity in 1, 2 or 3 dimensions

Isotropy: statistics invariant under rotation /reflection
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Random variables, processes and fields Random variables
Random processes
Random fields

Spatial statistics

» Two-point (one-time) correlation
Rij(r,x, t) = (ui(x, t) uj(x +r, t))

» integral length scale in direction ey:

1 oo
T - / R; t)d
v R,"(O,X, t) 0 J(ekr’x, ) '

— extension of largest scales HRo

example: R(r1)
> L(l) > L(2) R(r2)

ri
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Random variables, processes and fields Random variables
Random processes
Random fields

Wavenumber spectra in homogeneous turbulence

» homogeneous turbulence: Fourier analysis meaningful

» 3D spatial Fourier mode (wavevector k):
exp(/k - x) = cos(k - x) + I sin(k - x)

» Fourier transform:

(k) = (271T)3 / T ) e dx, ui(x) = / (k) et " drs

—0o0 —0o0

> homogeneity also implies: Rjj(x,r, t) = Rj(r, t)
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Random variables, processes and fields Random variables
Random processes
Random fields

Wavenumber spectra in homogeneous turbulence (2)

» velocity spectrum tensor: transform of two-point correlation

1 <
¢;i(k,t) = e ""'Ri(r, t)dr
et = o [ Ry
(0.9}
Ri(r,t) = / e (K, t) dr
— o0
o0
> setting r = O: Rij(0,t) = (uju}) = / ®ji(k, t)dK
— 00

» energy spectrum function:

amﬂz%/m¢ﬂmﬂamp%ym

— 00

[©.@)

» contribution to TKE: /

—0o0

1 1
E(k,t)ds = ERII(Oy t) = §<U,{U;>
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Random variables, processes and fields Random variables
Random processes
Random fields

Computing averages

» probabilistic definition
(u(t))z/ VFI(V,t)dV
> ensemble averaging (repeated experiments):
N

() = 5 > w0

n=1

> time averaging (statist. stationary flow):

t+T
WMhE%[ u(t') dt

> space averaging (homogeneous flow):

(u(t)) = % g u(x, t) dx
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Reynolds stress

Reynolds-averaged equations T s ey

Reynolds decomposition

» decompose velocity field into mean and fluctuation:
u(x, t) = (u(x, t)) + u'(x, t)
» mean and fluctuation both satisfy continuity:
V-{u=0, V-u=0

» averaged momentum equation:

D) + ((u3) () ; + §<p>,,- = ) — (U

» appearance of Reynolds stress: <U;Uj>,j

2127

Reynolds stress

Reynolds-averaged equations A s oy

Characteristics of the Reynolds stresses

» Reynolds stresses act as additional or “apparent” stresses
> (uiu;) often much larger than viscous stresses

» closure problem: 4 equations — 10 unknowns !

> symmetric 2nd order tensor (uju}) = (u;u;)

» turbulent kinetic energy (TKE): k= 3(uul) >0
) g

. 2k 3

— (uju) = 2k (§5,-j + b,-j)

> define anisotropy: bjj =
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Reynolds stress

Reynolds-averaged equations Turbulent viscosity

Closure by means of a turbulent viscosity

Turbulent viscosity hypothesis (Boussinesq 1877)

2
> —(uuf) = vr ((ui) g + (u5).0) — S0k

1
= O¢{ui) + ((ui){y;)) ; + P (Pefr) ; = [err ((ui) j + (uj),i)]
Veff =V + VT Peft = (P) + 5pk
» with expression for vt & k, closed system — widely used

» BUT: often hypothesis not valid!

More details on RANS modelling in lectures 8-12
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Problem
Outlook
Conclusion Further reading

Summary

Main questions of the present lecture

» How do we compute and analyze a turbulent flow statistically?

» Part |: What are the basic mathematical tools?

» random variables, processes, fields
> two-time/two-point correlations
» Fourier space analysis

» Part |I: What are the averaged equations?

» Reynolds decomposition and averaging
» closure problem, turbulent viscosity
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Problem
Outlook
Conclusion Further reading

Problem

Consider the following Reynolds-stress tensors:

06 005 O 04 05 0
(ui}) = | 0.05 0.5 0 (ui}) =1 05 03 0
0 0 -0.1 0O 0 03

Why are these values impossible?
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Problem
Outlook
Conclusion Further reading

Outlook on next lecture: Free shear flows

How does a turbulent flow develop away from solid boundaries?
How can the equations be simplified for slow spatial evolution?
What is the evolution in the self-similar region?

What is the turbulence structure in a plane jet?
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Problem
Outlook
Conclusion Further reading

Further reading

» S. Pope, Turbulent flows, 2000
— chapter 3,4
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