Turbulenzmodelle in der Strömungsmechanik

Turbulent flows and their modelling

Markus Uhlmann

Institut für Hydromechanik

www.ifh.uni-karlsruhe.de/people/uhlmann

WS 2008

1/21

Equations of fluid motion Transformation properties Film Conclusion

Schedule

1	General introduction to turbulent flows	20.10.
2	Equations of fluid motion	27.10.
3	Statistical description of turbulence	10.11.
4	Free shear flows	17.11.
5	The scales of turbulent motion	24.11.
5	Wall-bounded shear flows	1.12.
7	DNS as numerical experiments	8.12.
3	Introduction to RANS modelling	15.12.
9	k extstyle arepsilon and other eddy viscosity models	12.1.
10	Reynolds-stress transport models	19.1.
11	Boundary conditions and wall treatment	26.1.
12	Algebraic stress models	2.2.

Summary of last lecture

Lecture 1 – Introduction

- ▶ Why is fluid turbulence important?
 - ubiquity; greatly enhances transport (mass, momentum, heat)
- ▶ How do we define turbulence?
 - ▶ irregular, 3D, vortical, wide range of scales (Reynolds number)
- ▶ What are the principal difficulties for engineers?
 - unpredictable in detail, direct simulation too costly
 - ► LES, <u>RANS</u> approach more feasible
- ⇒ need for closure models

3/21

Equations of fluid motion Transformation properties Film Conclusion

LECTURE 2

Equations of fluid motion

Questions to be answered in the present lecture

How can the fluid motion be described mathematically?

What are the transformation properties of the conservation laws?

Film "Turbulence" by R.W. Stewart

5/21

Equations of fluid motion Transformation properties Film Conclusion

Continuity

Kinetic energy

General assumptions

Set the following framework:

- ▶ continuum hypothesis ($Kn \equiv \lambda/\ell \ll 1$)
- consider Newtonian fluids
- restrict to incompressible fluids

Invoke the following principles:

- mass conservation
- Newton's second law

6/21

Mass conservation: continuity equation

7 / 21

Equations of fluid motion Transformation properties

Continuity Momentum

Newton's 2nd law: momentum equation

Momentum balance

8/21

Momentum equation

Navier-Stokes equation for incompressible Newtonian fluid:

▶ alternatively, in tensor notation:

$$\partial_t u_i + u_j u_{i,j} + \frac{1}{\rho} p_{,i} = \nu u_{i,jj} + f_i$$

constant density: gravity absorbed in modified pressure:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot
abla) \mathbf{u} + rac{1}{
ho}
abla
ho =
u
abla^2 \mathbf{u}$$

9 / 21

Equations of fluid motion Transformation properties Film Continuity Momentum Kinetic energy Vorticity

The role of pressure

Consider constant-density flows

- ▶ pressure ≠ thermodynamic variable
- **>** pressure enforces divergence-free condition ($\Delta \equiv \nabla \cdot \mathbf{u}$):

$$\frac{\mathsf{D}\Delta}{\mathsf{D}t} - \nu \nabla^2 \Delta = \underbrace{-\frac{1}{\rho} \nabla^2 \, p - u_{j,i} \, u_{i,j}}_{=R}$$

for $\Delta=0$, need R=0. Therefore: $abla^2 p=ho(u_{j,i}\,u_{i,j})$

non-local character of pressure:

$$p(\mathbf{x},t) = p^h(\mathbf{x},t) + \frac{\rho}{4\pi} \int \frac{u_{j,i} u_{i,j}}{|\mathbf{x} - \mathbf{x}'|} d\mathbf{x}'$$

⇒ perturbations affect the entire flow

The kinetic energy equation

Derivation

- ▶ <u>definition</u> of kinetic energy: $E_k \equiv \mathbf{u} \cdot \mathbf{u}/2 = u_i u_i/2$ (summation on *i*)
- ▶ transport equation: multiply momentum equation with **u**

$$\frac{\mathsf{D}E_k}{\mathsf{D}t} = -(u_j \, p/\rho)_{,j} + (2\nu u_i S_{ij})_{,j} - 2\nu S_{ij} S_{ij}$$
with: $S_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$

11/21

Equations of fluid motion Transformation properties Film Conclusion Continuity Momentum Kinetic energy Vorticity

The kinetic energy equation

Significance of the terms

▶ integration over an arbitrary volume *V*:

$$\frac{d}{dt} \int E_k dV = -\underbrace{\oint (E_k \mathbf{u} \cdot \mathbf{n}) dS}_{convection} - \underbrace{\oint \left(\frac{p}{\rho} \mathbf{u} \cdot \mathbf{n}\right) dS}_{pressure \ work} + \underbrace{\oint (\mathbf{u} \cdot \boldsymbol{\tau}) \cdot \mathbf{n} dS}_{viscous \ work} - \underbrace{\int (2\nu S_{ij} S_{ij}) dV}_{dissipation}$$

• rate of dissipation: $\varepsilon \equiv 2\nu S_{ij}S_{ij} \geq 0$

The vorticity equation

Definition of vorticity

- ▶ (twice) angular velocity of fluid element
- derive transport equation by applying curl to momentum equation:

$$\partial_t \omega + (\mathbf{u} \cdot \nabla) \omega = (\omega \cdot \nabla) \mathbf{u} + \nu \nabla^2 \omega$$

pressure eliminated, additional stretching term

13 / 21

Equations of fluid motion Transformation properties Film Conclusion Continuity Momentum Kinetic energy Vorticity

Vortex stretching and tilting

Contributions to the term $(oldsymbol{\omega}\cdot abla)\mathbf{u}$

- $\blacktriangleright \omega_{v} \partial_{v}(v) > 0$
- ightarrow tends to increase ω_{y}
- "vortex stretching"

- $\qquad \qquad \bullet_{y} \, \partial_{y}(u) > 0$
- ightarrow tends to generate $\omega_{\scriptscriptstyle X}$
- "vortex tilting"

The enstrophy equation

Enstrophy and vortex stretching

- definition of enstrophy: $\omega^2/2 = \omega \cdot \omega/2$
- lacktriangle transport equation: multiply vorticity equation by ω

$$\frac{\mathsf{D}(\omega^2/2)}{\mathsf{D}t} = \boldsymbol{\omega} \cdot (\boldsymbol{\omega} \cdot \nabla) \, \mathbf{u} + \nu \nabla^2 (\omega^2/2) - \nu (\nabla \boldsymbol{\omega})^2$$

▶ in a turbulent flow: the stretching term tends to increase the enstrophy

15 / 21

Equations of fluid motion Transformation properties Film Conclusion

Non-dimensional equations

- lacktriangle use length scale ${\cal L}$ and velocity scale ${\cal U}$
- define non-dimensional variables:

$$\hat{\mathbf{x}} = \mathbf{x}/\mathcal{L}, \ \hat{\mathbf{t}} = t/\mathcal{T} = t\mathcal{U}/\mathcal{L}$$

 $\hat{\mathbf{u}} = \mathbf{u}/\mathcal{U}, \ \hat{\mathbf{p}} = \mathbf{p}/(\rho\mathcal{U}^2)$

substitute into Navier-Stokes equations:

$$\frac{\partial \hat{u}_{i}}{\partial \hat{x}_{i}} = 0$$

$$\frac{\partial \hat{u}_{i}}{\partial \hat{t}} + \hat{u}_{j} \frac{\partial \hat{u}_{i}}{\partial \hat{x}_{j}} = -\frac{\partial \hat{p}}{\partial \hat{x}_{i}} + \frac{1}{Re} \frac{\partial^{2} \hat{u}_{i}}{\partial \hat{x}_{j} \partial \hat{x}_{j}}$$

• Reynolds number: $Re \equiv \frac{\mathcal{UL}}{\nu}$

Transformation properties

Navier Stokes equations

- Reynolds number similarity (different \mathcal{L}_b , \mathcal{U}_b , ν_b only changes Re_b)
- time and space invariance (shift by X and T)
- ▶ rotated or reflected reference frame → invariant
- time reversal: NOT invariant (viscous term changes sign!)
- Galilean invariance (constantly moving frame)
 - → Navier-Stokes are invariant (velocities are not)
- ▶ frame rotating in time → not invariant (Coriolis force)

17 / 21

Equations of fluid motion Transformation properties Film Conclusion

Film material

"Turbulence"

- by R.W. Stewart, University of British Columbia
- ▶ 29 min
- ▶ US Natl. Commitee on Fluid Mechanics Films (1969)
- ▶ (play)

Summary

Main questions of the present lecture

- ▶ How can the fluid motion be described mathematically?
 - Navier-Stokes equations (momentum + continuity)
 - alternatively: vorticity equation
 - ⇒ energy, enstrophy equations
- ► What are the transformation properties of the conservation laws?
 - ▶ Re similarity, rotation/reflection, Galilean invariance
 - ▶ NO time reversal, Coriolis in rotating frame

19 / 21

Equations of fluid motion Transformation properties Film Conclusion

Outlook Further reading

Outlook on next lecture: Statistical description

How do we compute and analyze a turbulent flow statistically?

Part I: What are the basic mathematical tools?

Part II: What are the averaged equations?

Further reading

- ► S. Pope, *Turbulent flows*, 2000
 - $\rightarrow \text{ chapter } 2$
- ▶ U. Frisch, *Turbulence*, 1995
 - $\rightarrow \text{ chapter } 2$

21 / 21