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Schedule
1 General introduction to turbulent flows  20.10.
2  Equations of fluid motion 27.10.
3 Statistical description of turbulence 10.11.
4 Free shear flows 17.11.
5  The scales of turbulent motion 24.11.
6  Wall-bounded shear flows 1.12.
7 DNS as numerical experiments 8.12.
8  Introduction to RANS modelling 15.12.
9  k— and other eddy viscosity models 12.1.
10 Reynolds-stress transport models 19.1.
11 Boundary conditions and wall treatment  26.1.
12 Algebraic stress models 2.2.
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Summary of last lecture

Lecture 1 — Introduction

» Why is fluid turbulence important?
» ubiquity; greatly enhances transport (mass, momentum, heat)

» How do we define turbulence?
» irregular, 3D, vortical, wide range of scales (Reynolds number)

» What are the principal difficulties for engineers?

» unpredictable in detail, direct simulation too costly
» LES, RANS approach more feasible

= need for closure models
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LECTURE 2

Equations of fluid motion
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Questions to be answered in the present lecture

How can the fluid motion be described mathematically?

What are the transformation properties of the
conservation laws?

Film “Turbulence” by R.W. Stewart
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

General assumptions

Set the following framework:

» continuum hypothesis (Kn = \/¢ < 1)
» consider Newtonian fluids

» restrict to incompressible fluids

Invoke the following principles:

» mass conservation

» Newton's second law
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

Mass conservation: continuity equation

| _ > time: t
pu | d pu + %dX > space: x = (x, Yy, 2)
/ d > density: p(x,t)
- » velocity:
s
e oo u(x, 1) = (u, v, w)
pw
% 8(5):'.) =0 incompressibility: g:’ =0
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

Newton's 2nd law: momentum equation

Momentum balance

> Du B P P
th a \ﬁ/ ~~
g ) body forces surface forces
material acceleration
00z
Z gxz + ox dx
A |
Du Ou
— =, Hu-V)u
| 00, 4 Dt 0 ( )
Oy + =2dX
| T Ty po VT
Osx <— > |y L 0 + Gdx
47 L ol » Newtonian fluid:
O' — — c— —
Y U;; d Tij = p(uij + uji)
/ -
> gravity: f=g

> ¥
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

Momentum equation

Navier-Stokes equation for incompressible Newtonian fluid:
- 8tu+(u-V)u+%Vp:1/V2u+f
» alternatively, in tensor notation:
Oru; + uju; j + %p,; =vuj+f

» constant density: gravity absorbed in modified pressure:

1
dru+ (u-V)u+ ;Vp = vV?u
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

The role of pressure

Consider constant-density flows

> pressure # thermodynamic variable

> pressure enforces divergence-free condition (A =V - u):

DA ) 1_,
D—t —vV°A=—-—-V P — UJ",' u,-J

A\ e

=R
for A =0, need R = 0. Therefore: V2p = —p(u; ; u; )

» non-local character of pressure:

h P Ujibij o
t) = t) + — [ L1
p(x,t) = p"(x,t) | ] X

= perturbations affect the entire flow
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

The kinetic energy equation

Derivation

» definition of kinetic energy:
Ex=u-u/2=uju;/2 (summation on /)

» transport equation: multiply momentum equation with u

DE

Dr =" (uj p/p),j + (2VUi5ij),j — 2v5;;5jj

with: Sj = 3(uij + uj,)
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

The kinetic energy equation

Significance of the terms

> W = — (EkUj),j - (;Uj) ] + (2VU,'5,'J')’J- — 27/5ij5ij

» integration over an arbitrary volume V:

d _ P
E/Ekdv = j{(Eku-n)dSJ %(;un) dS

convection pressure work
+j{(u -T7)-ndS — /(QVS,-J-S,-J-)dV
viscous work dissipation

> rate of dissipation: ¢ = 2v5;;5;; > 0
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

The vorticity equation

Definition of vorticity

T
—_ — (9w _9v Qu__9dw Ov_ Ou
>("J_vxu_((')y 0z? 0z Ox’ Ox 8y>

> (twice) angular velocity of fluid element

» derive transport equation by applying curl to momentum
equation:

Ow+ (u-V)w = (w-V)u+vViw

» pressure eliminated, additional stretching term
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

Vortex stretching and tilting

Contributions to the term (w - V)u

w W
y Y v y Y
A A
X X
> wy, 0y(v) >0 > wy, 0y(u) >0
— tends to increase w), — tends to generate wy
» “vortex stretching” > “vortex tilting”
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Equations of fluid motion Continuity
Momentum
Kinetic energy
Vorticity

The enstrophy equation

Enstrophy and vortex stretching

» definition of enstrophy: w?/2 = w - w/2
» transport equation: multiply vorticity equation by w
D(w?/2)
Dt

» in a turbulent flow:
the stretching term tends to increase the enstrophy

=w- (w-V)u+vV3i(w?/2) — v(Vw)?
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Transformation properties

Non-dimensional equations

» use length scale £ and velocity scale U

» define non-dimensional variables:
X=x/L, t= t/T =tU/L
0=u/U, p=p/(pU?)

» substitute into Navier-Stokes equations:

oli;
= 0
O%;
aa,-+Aaa,- op 1 0%p
ot ok 8% = Re 0%;0%
uc

» Reynolds number: Re =
v
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Transformation properties

Transformation properties

Navier Stokes equations

» Reynolds number similarity
(different Lp, Up, vp only changes Rep)

» time and space invariance

(shift by X and T)
» rotated or reflected reference frame — invariant

» time reversal: NOT invariant
(viscous term changes sign!)

» Galilean invariance (constantly moving frame)
— Navier-Stokes are invariant (velocities are not)

» frame rotating in time — not invariant (Coriolis force)
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Film material

“Turbulence”
» by R.W. Stewart, University of British Columbia
> 29 min

» US Natl. Commitee on Fluid Mechanics Films (1969)

> (play)
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Outlook
Further reading
Conclusion

Summary

Main questions of the present lecture

» How can the fluid motion be described mathematically?
» Navier-Stokes equations (momentum + continuity)
» alternatively: vorticity equation
= energy, enstrophy equations

» What are the transformation properties of the
conservation laws?
> Re similarity, rotation/reflection, Galilean invariance
» NO time reversal, Coriolis in rotating frame
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Outlook
Further reading
Conclusion

Outlook on next lecture: Statistical description

How do we compute and analyze a turbulent flow statistically?

Part |: What are the basic mathematical tools?

Part |I: What are the averaged equations?
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Outlook

Further reading
Conclusion

Further reading

» S. Pope, Turbulent flows, 2000
— chapter 2

» U. Frisch, Turbulence, 1995
— chapter 2
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