Turbulenzmodelle in der Strömungsmechanik Turbulent flows and their modelling

Markus Uhlmann

Institut für Hydromechanik

www.ifh.uni-karlsruhe.de/people/uhlmann

WS 2008

Introduction to turbulence Conclusion

Schedule

1	General introduction to turbulent flows	20.10.
2	Equations of fluid motion	27.10.
3	Statistical description of turbulence	10.11.
4	Free shear flows	17.11.
5	The scales of turbulent motion	24.11.
6	Wall-bounded shear flows	1.12.
7	DNS as numerical experiments	8.12.
8	Introduction to RANS modelling	15.12.
9	$k extsf{-}arepsilon$ and other eddy viscosity models	12.1.
10	Reynolds-stress transport models	19.1.
11	Boundary conditions and wall treatment	26.1.
12	Algebraic stress models	2.2.

General outline of the course

Questions to be discussed:

- How do turbulent flows behave?
- How can turbulence be described quantitatively?
- What are the fundamental physical processes involved?
- ▶ How can we model or simulate those flows?

Introduction to turbulence Conclusion

Literature

► S. Pope, *Turbulent flows*, 2000 → this lecture roughly follows Pope's book

We are surrounded by turbulence

Turbulence can easily be observed in:

- mixing milk into cup of coffee
- wind motion in the atmosphere
- exhaust from chimneys, cigarettes
- flames
- rivers, waterfalls, ocean currents
- boundary layers on aircraft wings, jet engine exhaust

▶ ...

Introduction to turbulence Conclusion Turbulence is ubiquitous Characteristics of turbulence Computing turbulent flows History

Visualizing turbulent flow

Flow structures can be made visible by introducing:

- smoke
- colored dye
- hydrogen bubbles
- tracer particles

Also: directly visualize density fluctuations of the fluid

Schlieren, shadowgraph

7 / 37

Examples of turbulent flows (1)

Atmospheric boundary layers

► Earth, Jupiter

9 / 37

Introduction to turbulence Conclusion Turbulence is ubiquitous Characteristics of turbulence Computing turbulent flows History

Examples of turbulent flows (2)

Open channel flow over gravel bed

- $Re \approx 2 \cdot 10^5$, (M. Detert 2008)
- \Rightarrow turbulent flow is unsteady, complex patterns

Examples of turbulent flows (3)

Boundary layer, Re = 4000

 \rightarrow flow direction

11 / 37

Introduction to turbulence Conclusion Turbulence is ubiquitous Characteristics of turbulence Computing turbulent flows History

Examples of turbulent flows (4)

Flow around a sphere

Re = 15000 turbulent

Turbulence is ubiquitous Introduction to turbulence Conclusion Computing turbulent flows Examples of turbulent flows (5) Jet flow ► *Re* = 3000 laminar \rightarrow transitional \rightarrow turbulent 13 / 37 Turbulence is ubiquitous Characteristics of turbulence Computing turbulent flows Introduction to turbulence Conclusion Examples of turbulent flows (6) Grid-generated turbulence, nearly isotropic ► *Re* = 1360 (lines of H-bubbles)

Introduction to turbulence Conclusion Turbulence is ubiquitous Characteristics of turbulence Computing turbulent flows History

The random nature of turbulence (2)

point vortex systems:

$$\frac{\mathsf{d} x_j}{\mathsf{d} t} = -\frac{1}{2\pi} \sum_{i\neq j}^n \frac{\kappa_i (y_j - y_i)}{r_{ij}^2}, \quad \frac{\mathsf{d} y_j}{\mathsf{d} t} = \frac{1}{2\pi} \sum_{i\neq j}^n \frac{\kappa_i (x_j - x_i)}{r_{ij}^2}$$

2D: chaotic for $n \ge 6$

 \Rightarrow initially close states diverge exponentially

2D point vortex systems

irregularity:

chaotic motion in time and space (3D)
 but: averages are well-defined

- complex vortical motion
 - irrotational flow does not give rise to chaos
- wide range of scales
 - from size of the geometry to dissipative scales
- increased transport
 - momentum, mass, heat
- dissipative

Effects of turbulence can be desired or undesired

Effects of increased properties

	not desired	desired
momentum:	drag increase	delayed separation
mass:	controllability of processes	mixing in combustion, dispersion of pollutants
heat:	heat loss	efficient exchange

 \Rightarrow Turbulent flow <u>control</u> is an important field

aeronautics, turbomachinery, ...

Also: stability, transition

27 / 37

Introduction to turbulence Conclusion Turbulence is ubiquitous Characteristics of turbulence Computing turbulent flows History

Different approaches to computing turbulent flows (1)

Time-dependent, 3D solution of Navier-Stokes:

"Direct numerical simulation" (DNS)

- given the field $\mathbf{u}(t=0)$ and boundary conditions
- $\rightarrow\,$ integrate in time, then compute desired quantity

Problems:

- sensitivity to initial conditions → statistics
- enormous computational requirements
- (cf. lecture 7)

Different approaches to computing turbulent flows (2)

Spatially filtered Navier-Stokes:

"Large eddy simulation" (LES)

- evolution of large scales is simulated
- small-scales are modelled
- \rightarrow substantial savings w.r.t. DNS (coarser grid, larger step)

Problems:

- ► 3D, time-dependent
- costly for applications
- (cf. separate course on LES)

29 / 37

Introduction to turbulence Conclusion Turbulence is ubiquitous Characteristics of turbulence Computing turbulent flows History

Different approaches to computing turbulent flows (3)

Reynolds-averaged Navier-Stokes (RANS)

- equations are averaged a priori
- turbulence appears as additional unknowns
- \rightarrow often stationary problem, additional symmetries

Problems:

- closure problem*
- \rightarrow modelling (cf. lectures 8...)

da Vinci on Turbulence

"Observe the motion of the surface of the water, which resembles that of hair, which has two motions, of which one is caused by the weight of the hair, the other by the direction of the curls; thus the water has eddying motions, one part of which is due to the principal current, the other to random and reverse motion." *(cited by Lumley, Phys. Fluids A, 1992)*

33 / 37

Introduction to turbulence Conclusion Turbulence is ubiquitous Characteristics of turbulence Computing turbulent flows History

History of early turbulence research (rough list)

1510	da Vinci:	
	observes eddying motion in water	
1854	Hagen, Darcy:	
	observe two different laws for pressure drop in pipes	
1851-70	St. Venant, Boussinesq:	
	introduce concept of eddy viscosity	
1883-94	Reynolds:	
	transition criterion in pipes, flow decomposition, stresses	
1922	Richardson:	
	formulation of cascade process	
1941	Kolmogorov:	
	quantitative theory for the cascade at high Re number	
and:	Prandtl, Taylor, von Karman,	
		34 / 37

Outlook Further reading

Summary

Further reading

- ▶ M. van Dyke, An Album of Fluid Motion, 1982
 → visualization of interesting flow physics
- ► U. Frisch, *Turbulence*, 1995
 → chapter 1 for an intruduction to turbulence and symmetries