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Questions to be answered in the present lecture

How can the linear eddy viscosity assumption be avoided
without the need for solving transport equations?

I algebraic stress models

I nonlinear eddy viscosity models
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Intermediate between RSM and Boussinesq approximation

Reynolds stress transport models

I naturally incorporate transport effects

I describe stress production exactly

BUT: high computational cost (equations for 6 components)

Standard eddy-viscosity models (Boussinesq approximation)

(A) local relation between Reynolds stress and mean strain

(B) linear relation between Reynolds stress and mean strain

 (A) is inevitable

⇒ (B) can be changed

⇒ non-linear Reynolds stress/mean strain relationships
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Algebraic stress models

Reynolds stress
equations for
transport model:

D̄〈u′iu′j〉
D̄t

+ (Tkij),k︸ ︷︷ ︸
≡Dij (transport)

= Pij +Rij − 2

3
ε̃δij

Basic idea of algebraic stress models (ASM):

I approximating transport terms Dij by local expressions

→ resulting model is free from derivatives:

6 algebraic equations relating 〈u′iu′j〉, k , ε̃, 〈ui 〉,j
⇒ approach benefits from known models for pressure-strain Rij
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Algebraic stress models – equilibrium assumption

Reynolds stress
equations for
transport model:

D̄〈u′iu′j〉
D̄t

+ (Tkij),k︸ ︷︷ ︸
≡Dij (transport)

= Pij +Rij − 2

3
ε̃δij

Simplest local equilibrium assumption:

I neglect the transport term altogether: Dij = 0

⇒ implies for the turbulent energy: 1
2Dll = P − ε̃ = 0

 problem: equality P = ε̃ not verified in general!
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Algebraic stress models – weak equilibrium assumption

Reynolds stress
equations for
transport model:

D̄〈u′iu′j〉
D̄t

+ (Tkij),k︸ ︷︷ ︸
≡Dij (transport)

= Pij +Rij − 2

3
ε̃δij

Weak equilibrium assumption (Rodi 1972)

I rewriting Reynolds stress in terms of anisotropy and TKE:

〈u′iu′j〉 = 2k bij + 2
3 k δij

I neglecting transport of anisotropy:
¯D〈u′i u

′
j 〉

¯Dt
=
〈u′i u

′
j 〉

k

¯Dk
¯Dt

+ k
¯D
¯Dt

( 〈u′i u′j 〉
k

)
≈ 〈u

′
i u
′
j 〉

k

¯Dk
¯Dt

I applying the approximation to the entire transport term:

Dij ≈ 〈u
′
i u
′
j 〉

k · (transport of k) =
〈u′i u

′
j 〉

k
1
2Dll =

〈u′i u
′
j 〉

k (P − ε̃)

⇒ final model:
〈u′i u

′
j 〉

k (P − ε̃) = Pij +Rij − 2
3 ε̃δij 7 / 20



Introduction
Algebraic stress models

Non-linear eddy viscosity models

ASM predictions for homogeneous shear flow

LRR-IP pressure-strain model

Rij = −CR2ε̃bij−C2(Pij− 2
3Pδij)

I corresponding ASM:

bij =
1
2

(1−C2)

CR−1+P/ε̃ ·
Pij− 2

3
δijP

ε̃

I in homogeneos shear flow:

bij has finite limit for Pε̃ →∞
b11 → 4

15

b22 → − 2
15

b12 → −1
5

⇒ stress remains realizable

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000
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Figure 11.20: Reynolds-stress anisotropies as functions of P/ε accord-

ing to the LRR-IP algebraic stress model. The dashed line shows

b12 according to the k-ε model.
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P/ε̃

——, ASM predictions; – – – –, k-ε model

(from Pope “Turbulent Flows”, 2000)
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Stress/mean strain relation implied by ASM

LRR-IP pressure-strain model

I define:

−〈u′v ′〉 = Cµ
k2

ε̃ 〈u〉,y
with unknown function Cµ

I substituting ASM:

Cµ =
2
3

(1−C2)(CR−1+C2P/ε̃)

(CR−1+P/ε̃)2

⇒ Cµ decreases with P/ε̃

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000
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Figure 11.21: The value of Cµ as a function of P/ε given by the LRR-IP

algebraic stress model (Eq. 11.220).
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P/ε̃

——, ASM predictions

(from Pope “Turbulent Flows”, 2000)
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Assessing the ASM approach

Achievements of algebraic stress models

I partial differential equations reduced to algebraic equations

I physics of pressure-strain model is carried over

Problems of the ASM approach

I implicit system of equations

I dependence is in general non-linear

I system can have multiple solutions

I numerical stiffness
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Performance in free shear flow
Performance in flow with system rotation

Explicit ASM or non-linear eddy viscosity models

Explicit ASM (EASM)

I explicit expressions for the stress components are numerically
desirable

I there are two routes (viewpoints) to achieve this:

1. construct an implicit ASM (as above): bij = fi (bij ,
k
ε̃ 〈ui 〉,j)

then derive equivalent explicit form analytically

⇒ bij = fe(k
ε̃ 〈ui 〉,j)

2. construct an explicit expression for the Reynolds stresses:

⇒ bij = fe′(
k
ε̃ 〈ui 〉,j)

⇒ both approaches have been realized

⇒ results also known as “non-linear eddy viscosity models”
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Performance in free shear flow
Performance in flow with system rotation

Deriving explicit algebraic stress models

I ansatz: bij = Bij

(
Ŝ, Ω̂

)
where normalized mean rate of strain/rotation are defined:

Ŝij ≡ k
2ε̃ (〈ui 〉,j + 〈uj〉,i ), Ω̂ij ≡ k

2ε̃ (〈ui 〉,j − 〈uj〉,i )
I most general consistent expression (Pope 1975):

Bij

(
Ŝ, Ω̂

)
=
∑10

n=1G (n)T̂ (n)
ij

I with independent, symmetric, deviatoric functions:bT (1)
ij = bS bT (2)

ij = bSbΩ− bΩbS bT (3)
ij = bS2 − 1

3
trace(bS2)IbT (4)

ij = bΩ2 − 1
3

trace(bΩ2
)I bT (5)

ij = bΩbS2 − bS2 bΩ bT (6)
ij = bΩ2bS + bSbΩ2 − 2

3
trace(bSbΩ2

)IbT (7)
ij = bΩbSbΩ2 − bΩ2bSbΩ bT (8)

ij = bSbΩbS2 − bS2 bΩbS bT (9)
ij = bΩ2bS2 + bS2 bΩ2 − 2

3
trace(bS2 bΩ2

)IbT (10)
ij = bΩbS2 bΩ2 − bΩ2bS2 bΩ

and undetermined scalar coefficients G (n)
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Examples of EASM

Linear case – Boussinesq hypothesis

I G (1) = −Cµ; G (n) = 0 for n ≥ 2 → bij = −CµŜij

Statistically two-dimensional flow (Pope, 1975)

I sum contains only three terms (G (n) = 0 for n ≥ 4)

General three-dimensional flow

I all 10 terms are non-zero

1. ASM approach:
Gatski & Speziale (1993), based on linear pressure-strain

2. direct approach:
Shih, Zhu & Lumley (1995), based on realizability
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Performance in free shear flow
Performance in flow with system rotation

Performance of EASM in mixing layer flow

Self-similar mixing layer

I spreading rate dδ/dx :
exp. EASM (SZL) k-ε

0.019 0.014 0.016

 EASM by Shih et al. not
well calibrated for free
shear flows

I anisotropy well predicted
(normal stresses)

y
δ
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Fig. 4.10: Profils transversaux de la composante axiale b11 de l’anisotropie.

b11

(experiment of Bell & Mehta, 1990)

14 / 20



Introduction
Algebraic stress models

Non-linear eddy viscosity models

Performance in free shear flow
Performance in flow with system rotation

Performance of EASM for rotating channel flow

Rotation in axial direction

I rotation has stabilizing
effect (production term)

⇒ EASM predictions are
reasonable

 linear eddy-viscosity fails

〈u〉

104 S. Wallin and A. V. Johansson

1.2
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Umean

Figure 7. Axial velocity in rotating pipe flow for different rotation ratios. Computations with the
current EARSM (EARSM 0) based on K–ω (lines) compared to experiment by Imao et al. (1996)
(symbols) for Z = 1 ( ) (�), Z = 0.5 ( ) (•) and Z = 0 ( ) (N).
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Figure 8. Angular velocity in rotating pipe flow for rotation ratio Z = 1. Computations with Chien
K–ε model ( ) and the current EARSM based on Chien K–ε, EARSM 0 ( ) and EARSM 1
( ), and the current EARSM (EARSM 0) based on K–ω ( ) compared to experiment by Imao
et al. (1996) (�).

The zeroth- and first-order solutions of N are only different approximations of the
exact solution for N or P/ε. The error can be investigated by computing the P/ε
ratio using the different approximations of N from a given flow field. Figure 9 shows
P/ε with N evaluated from the first- (EARSM 0) and second- (EARSM 1) order
solutions of N given by (2.7) and (2.13) respectively, compared to the exact solution.
The mean flow invariants of these expressions were taken from a fixed mean flow
field, which was the solution with EARSM 0 based on K–ε for Z = 1. We can see a
substantial difference between the zeroth- and first-order solutions and also that the
first-order solution is quite close to the exact one. As seen from the previous figures
this difference has still a quite small influence on the computed velocity profiles.

r/R

lines: EASM of Wallin & Johansson (2000)

symbols: experiment of Imao et al. (1996)

N no rotation; • medium; � strong
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Performance of EASM for rotating channel flow (2)

Rotation in spanwise direction

I rotation causes
non-symmetric profiles

⇒ EASM predictions are
comparable to full
transport model

〈u〉

y/H

——, EASM of Gatski & Speziale (1993)

� experiment of Johnston et al. (1972)
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Summary of today’s lecture

How can the linear eddy viscosity assumption be avoided
without the need for solving transport equations?

I transport terms eliminated by weak equilibrium assumption

1. algebraic stress models (ASM)
I inherit properties of pressure-strain model

 often numerical difficulties

2. nonlinear eddy viscosity models (EASM)
I provide general explicit expressions for Reynolds stresses

⇒ allow for prediction of complex straining fields
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Summary (2): A hierarchy of RANS models

(a) elliptic relaxation RSM

(b) standard RSM

(c) ASM (with k-ε equations)

(d) nonlinear eddy-viscosity model (with k-ε)

(e) standard (isotropic eddy-viscosity) k-ε model

(f) one-equation k-model (with `m)

(g) mixing-length model

Which assumption is added when stepping from (a) to (g)?
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Problem to be solved:

Consider a simple homogeneous shear flow with 〈ui 〉,j = δi1δj2S,
where S is constant. Write the turbulent shear-stress anisotropy
b12 given by the k-ε model as a function of the ratio between
turbulent kinetic energy production and dissipation, P/ε̃. What is
the limiting value of P/ε̃ above which the Reynolds stress tensor
becomes non-realizable?
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Further reading

I S. Pope, Turbulent flows, 2000
→ chapter 11

I D.C. Wilcox, Turbulence modeling for CFD, 2006
→ chapter 6

20 / 20


	Introduction
	Algebraic stress models
	Non-linear eddy viscosity models
	Performance in free shear flow
	Performance in flow with system rotation


