Turbulenzmodelle in der Strömungsmechanik Turbulent flows and their modelling

Markus Uhlmann

Institut für Hydromechanik

www.ifh.uni-karlsruhe.de/people/uhlmann

WS 2008/2009

LECTURE 12

Algebraic stress models

Questions to be answered in the present lecture

How can the linear eddy viscosity assumption be avoided *without* the need for solving transport equations?

- algebraic stress models
- nonlinear eddy viscosity models

Intermediate between RSM and Boussinesq approximation

Reynolds stress transport models

- naturally incorporate transport effects
- describe stress production exactly
 BUT: high computational cost (equations for 6 components)

Standard eddy-viscosity models (Boussinesq approximation)

- (A) local relation between Reynolds stress and mean strain
- (B) *linear* relation between Reynolds stress and mean strain
 - \rightsquigarrow (A) is inevitable
 - \Rightarrow (B) can be changed

\Rightarrow non-linear Reynolds stress/mean strain relationships

Algebraic stress models

Reynolds stress equations for transport model:

$$\underbrace{\frac{\bar{\mathsf{D}}\langle u_i'u_j'\rangle}{\bar{\mathsf{D}}t} + (\mathcal{T}_{kij})_{,k}}_{\equiv \mathcal{D}_{ij}} = \mathcal{P}_{ij} + \mathcal{R}_{ij} - \frac{2}{3}\tilde{\varepsilon}\delta_{ij}$$

Basic idea of algebraic stress models (ASM):

- approximating transport terms \mathcal{D}_{ij} by *local* expressions
- \rightarrow resulting model is free from derivatives:

6 algebraic equations relating $\langle u'_i u'_i \rangle$, k, $\tilde{\varepsilon}$, $\langle u_i \rangle_{,i}$

 \Rightarrow approach benefits from known models for pressure-strain \mathcal{R}_{ij}

Algebraic stress models – equilibrium assumption

Reynolds stress equations for transport model:

$$\underbrace{\frac{\bar{\mathsf{D}}\langle u_i'u_j'\rangle}{\bar{\mathsf{D}}t} + (\mathcal{T}_{kij})_{,k}}_{\equiv \mathcal{D}_{ij}} = \mathcal{P}_{ij} + \mathcal{R}_{ij} - \frac{2}{3}\tilde{\varepsilon}\delta_{ij}$$

Simplest local equilibrium assumption:

- neglect the transport term altogether: $\mathcal{D}_{ii} = 0$
- \Rightarrow implies for the turbulent energy: $\frac{1}{2}\mathcal{D}_{II} = \mathcal{P} \tilde{\varepsilon} = 0$
- \rightsquigarrow problem: equality $\mathcal{P} = \tilde{\varepsilon}$ not verified in general!

Algebraic stress models - weak equilibrium assumption

Reynolds stress equations for transport model:

$$\underbrace{\frac{\bar{\mathsf{D}}\langle u_i'u_j'\rangle}{\bar{\mathsf{D}}t} + (\mathcal{T}_{kij})_{,k}}_{\equiv \mathcal{D}_{ij} \text{(transport)}} = \mathcal{P}_{ij} + \mathcal{R}_{ij} - \frac{2}{3}\tilde{\varepsilon}\delta_{ij}$$

Weak equilibrium assumption

(Rodi 1972)

- ► rewriting Reynolds stress in terms of anisotropy and TKE: $\langle u'_i u'_j \rangle = 2k b_{ij} + \frac{2}{3}k \delta_{ij}$
- ► neglecting transport of anisotropy: $\frac{\bar{D}\langle u'_i u'_j \rangle}{\bar{D}t} = \frac{\langle u'_i u'_j \rangle}{k} \frac{\bar{D}_k}{\bar{D}t} + k \frac{\bar{D}}{\bar{D}t} \left(\frac{\langle u'_i u'_j \rangle}{k} \right) \approx \frac{\langle u'_i u'_j \rangle}{k} \frac{\bar{D}_k}{\bar{D}t}$

applying the approximation to the entire transport term:

$$\mathcal{D}_{ij} \approx \frac{\langle u_i' u_j' \rangle}{k} \cdot (\text{transport of } k) = \frac{\langle u_i' u_j' \rangle}{k} \frac{1}{2} \mathcal{D}_{II} = \frac{\langle u_i' u_j' \rangle}{k} \left(\mathcal{P} - \tilde{\varepsilon} \right)$$

$$\Rightarrow \text{ final model:} \qquad \frac{\langle u_i' u_j' \rangle}{k} \left(\mathcal{P} - \tilde{\varepsilon} \right) = \mathcal{P}_{ij} + \mathcal{R}_{ij} - \frac{2}{3} \tilde{\varepsilon} \delta_{ij}$$

ASM predictions for homogeneous shear flow

LRR-IP pressure-strain model

$$\mathcal{R}_{ij} = -C_R 2\tilde{\varepsilon} b_{ij} - C_2 (\mathcal{P}_{ij} - \frac{2}{3}\mathcal{P}\delta_{ij})$$

corresponding ASM:

$$b_{ij} = rac{rac{1}{2}(1-C_2)}{C_R - 1 + \mathcal{P}/ ilde{arepsilon}} \cdot rac{\mathcal{P}_{ij} - rac{2}{3}\delta_{ij}\mathcal{P}}{ ilde{arepsilon}}$$

▶ in homogeneos shear flow: b_{ij} has finite limit for $\frac{\mathcal{P}}{\tilde{\varepsilon}} \to \infty$

$$b_{11} \rightarrow \frac{4}{15}$$

$$b_{22} \rightarrow -\frac{2}{15}$$

$$b_{12} \rightarrow -\frac{1}{5}$$

 \Rightarrow stress remains realizable

Stress/mean strain relation implied by ASM

(from Pope "Turbulent Flows", 2000)

Assessing the ASM approach

Achievements of algebraic stress models

- partial differential equations reduced to algebraic equations
- physics of pressure-strain model is carried over

Problems of the ASM approach

- implicit system of equations
- dependence is in general non-linear
- system can have multiple solutions
- numerical stiffness

Explicit ASM or non-linear eddy viscosity models

Explicit ASM (EASM)

- explicit expressions for the stress components are numerically desirable
- ▶ there are two routes (viewpoints) to achieve this:
- 1. construct an *implicit* ASM (as above): $b_{ij} = f_i(b_{ij}, \frac{k}{\tilde{\varepsilon}} \langle u_i \rangle_j)$ then derive equivalent *explicit* form analytically

$$\Rightarrow \qquad b_{ij} = f_e(\frac{k}{\tilde{\varepsilon}} \langle u_i \rangle_{,j})$$

2. construct an *explicit* expression for the Reynolds stresses:

$$\Rightarrow \qquad b_{ij} = f_{e'}(\frac{k}{\tilde{\varepsilon}} \langle u_i \rangle_{,j})$$

- \Rightarrow both approaches have been realized
- \Rightarrow results also known as "non-linear eddy viscosity models"

Performance in free shear flow Performance in flow with system rotation

Deriving explicit algebraic stress models

$$\bullet \ \underline{\mathsf{ansatz}}: \quad b_{ij} = \mathcal{B}_{ij}\left(\widehat{\mathbf{S}}, \widehat{\mathbf{\Omega}}\right)$$

where normalized mean rate of strain/rotation are defined:

$$\widehat{S}_{ij} \equiv \frac{k}{2\tilde{\varepsilon}} \left(\langle u_i \rangle_{,j} + \langle u_j \rangle_{,i} \right), \qquad \qquad \widehat{\Omega}_{ij} \equiv \frac{k}{2\tilde{\varepsilon}} \left(\langle u_i \rangle_{,j} - \langle u_j \rangle_{,i} \right)$$

most general consistent expression (Pope 1975):

$$\mathcal{B}_{ij}\left(\widehat{\mathbf{S}},\widehat{\mathbf{\Omega}}\right) = \sum_{n=1}^{10} G^{(n)}\widehat{T}_{ij}^{(n)}$$

with independent, symmetric, deviatoric functions:

$$\begin{split} \hat{\mathcal{T}}_{ij}^{(1)} &= \widehat{\mathbf{S}} & \hat{\mathcal{T}}_{ij}^{(2)} &= \widehat{\mathbf{S}}\widehat{\Omega} - \widehat{\Omega}\widehat{\mathbf{S}} & \hat{\mathcal{T}}_{ij}^{(3)} &= \widehat{\mathbf{S}}^2 - \frac{1}{3}\mathrm{trace}(\widehat{\mathbf{S}}^2)\mathbf{I} \\ \hat{\mathcal{T}}_{ij}^{(4)} &= \widehat{\Omega}^2 - \frac{1}{3}\mathrm{trace}(\widehat{\Omega}^2)\mathbf{I} & \hat{\mathcal{T}}_{ij}^{(5)} &= \widehat{\Omega}\widehat{\mathbf{S}}^2 - \widehat{\mathbf{S}}^2\widehat{\Omega} & \hat{\mathcal{T}}_{ij}^{(6)} &= \widehat{\Omega}^2\widehat{\mathbf{S}} + \widehat{\mathbf{S}}\widehat{\Omega}^2 - \frac{2}{3}\mathrm{trace}(\widehat{\mathbf{S}}\widehat{\Omega}^2)\mathbf{I} \\ \hat{\mathcal{T}}_{ij}^{(7)} &= \widehat{\Omega}\widehat{\mathbf{S}}\widehat{\Omega}^2 - \widehat{\Omega}^2\widehat{\mathbf{S}}\widehat{\Omega} & \hat{\mathcal{T}}_{ij}^{(8)} &= \widehat{\mathbf{S}}\widehat{\Omega}\widehat{\mathbf{S}}^2 - \widehat{\mathbf{S}}^2\widehat{\Omega} & \hat{\mathcal{T}}_{ij}^{(9)} &= \widehat{\Omega}^2\widehat{\mathbf{S}}^2 + \widehat{\mathbf{S}}^2\widehat{\Omega}^2 - \frac{2}{3}\mathrm{trace}(\widehat{\mathbf{S}}\widehat{\Omega}^2)\mathbf{I} \\ \hat{\mathcal{T}}_{ij}^{(10)} &= \widehat{\Omega}\widehat{\mathbf{S}}^2\widehat{\Omega}^2 - \widehat{\Omega}^2\widehat{\mathbf{S}}^2\widehat{\Omega} & \\ \end{split}$$

and undetermined scalar coefficients $G^{(n)}$

Performance in free shear flow Performance in flow with system rotation

Examples of EASM

Linear case – Boussinesq hypothesis

•
$$G^{(1)} = -C_{\mu}; \ G^{(n)} = 0 \text{ for } n \ge 2 \quad \rightarrow \quad b_{ij} = -C_{\mu}\widehat{S}_{ij}$$

Statistically two-dimensional flow

sum contains only three terms

General three-dimensional flow

- all 10 terms are non-zero
- 1. ASM approach: Gatski & Speziale (1993), based on linear pressure-strain
- 2. direct approach: Shih, Zhu & Lumley (1995), based on realizability

(Pope, 1975)

 $(G^{(n)} = 0 \text{ for } n > 4)$

Performance in free shear flow Performance in flow with system rotation

Performance of EASM in mixing layer flow

Self-similar mixing layer

- spreading rate dδ/dx:
 exp. EASM (SZL) k-ε
 0.019 0.014 0.016
- →→ EASM by Shih et al. not well calibrated for free shear flows
 - anisotropy well predicted (normal stresses)

(experiment of Bell & Mehta, 1990)

Performance in free shear flow Performance in flow with system rotation

Performance of EASM for rotating channel flow

lines: EASM of Wallin & Johansson (2000) symbols: experiment of Imao et al. (1996)

▲ no rotation; • medium; ■ strong

Performance in free shear flow Performance in flow with system rotation

Performance of EASM for rotating channel flow (2)

Performance in free shear flow Performance in flow with system rotation

Summary of today's lecture

How can the linear eddy viscosity assumption be avoided *without* the need for solving transport equations?

- transport terms eliminated by weak equilibrium assumption
- 1. algebraic stress models (ASM)
 - inherit properties of pressure-strain model
 - → often numerical difficulties
- 2. nonlinear eddy viscosity models (EASM)
 - provide general explicit expressions for Reynolds stresses
 - \Rightarrow allow for prediction of complex straining fields

Summary (2): A hierarchy of RANS models

- (a) elliptic relaxation RSM
- (b) standard RSM
- (c) ASM (with k- ε equations)
- (d) nonlinear eddy-viscosity model (with k- ε)
- (e) standard (isotropic eddy-viscosity) k- ε model
- (f) one-equation k-model (with ℓ_m)
- (g) mixing-length model

Which assumption is added when stepping from (a) to (g)?

Performance in free shear flow Performance in flow with system rotation

Problem to be solved:

Consider a simple homogeneous shear flow with $\langle u_i \rangle_{,j} = \delta_{i1} \delta_{j2} S$, where S is constant. Write the turbulent shear-stress anisotropy b_{12} given by the k- ε model as a function of the ratio between turbulent kinetic energy production and dissipation, $\mathcal{P}/\tilde{\varepsilon}$. What is the limiting value of $\mathcal{P}/\tilde{\varepsilon}$ above which the Reynolds stress tensor becomes non-realizable?

Performance in free shear flow Performance in flow with system rotation

Further reading

- ► S. Pope, *Turbulent flows*, 2000 → chapter 11
- ► D.C. Wilcox, Turbulence modeling for CFD, 2006 → chapter 6