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k- modifications
Wall functions
RSM modifications

LECTURE 11

Boundary conditions and wall treatment
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» the wall-function approach
» specific model modifications for the wall region

» elliptic relaxation models for the pressure-strain correlation
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k-e modifications
Wall functions
RSM modifications

Physical effects in turbulent wall-bounded flow

Main features of the near-wall region:

1. (locally) low Reynolds number Rey = k?/(ev)
2. high shear-rate Sk/e
3. tendency towards two-component turbulence
4

. wall-blocking effect on the pressure field

Consequences for modeling:

~> basic RANS models are not applicable

= most models need special ajustment
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» bridging the viscous wall region with analytical functions

» various modifications applied to the original formulations

» non-local model for pressure-strain correlation
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k-e modifications Turbulent viscosity
Wall functions The dissipation rate equation
RSM modifications Alternative models

Damping turbulent viscosity in k- models

Accounting for erroneous near-wall behavior

» overprediction with original expression: VT = Cuk;
» damped turbulent viscosity formulas:
K2
vy = fMC#? (0<fuly) <1)
» e.g. Rodi & Mansour (1993) propose data fit:
f, =1 — exp (—0.0002 y™ — 0.00065 y2)
» Durbin (1991) considers wall-normal stress responsible:

(v/ reduced near wall w.r.t. v/, w’ — cf. lecture 6)

k
— vy =C, <v'v’>g with: Cj, = 0.22
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Turbulent viscosity in plane channel flow

Re; = 550 Re; = 2000

50 100

o DNS Jimenez et al.
standard k-&

40 o2 807 ————Rodi & Mansour
oo
DQQ@""’D — - — Durbin
30 st 60
vr - VT
UV 20 vV 40
DNS Jimenez et al.
10 standard k-& 20
o .
& ————Rodi & Mansour
— - — Durbin o
00 50 100 150 0 50 100 150
+
y* y

» modifications based on damping function f,, lack generality
~~ they fail in BL with pressure gradient; numerically stiff
» Durbin’s (v/v/)-expression for v1 more physical

~> Reynolds dependence of v: C,Q should be fct. of Reynolds
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Near-wall modifications to the dissipation rate

The dissipation rate equation

>

| 2

the standard model uses completely artificial equation

not directly applicable to near-wall region

instead:

[‘[;i - <<y + ’:) é,j>J + G P~ f’2C52€:+E

with: &= & —vdy k) _, — such that é(y =0) =0
modifications through functions fi, >, E

various proposals exist (e.g. Jones & Launder, 1972;

Launder & Sharma, 1974; Lam & Bremhorst 1981)
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Turbulent viscosity
The dissipation rate equation
Alternative models

Performance of various modified k-¢ models

Flat-plate BL flow

~ large discrepancies

~ also: poor
performance in
adverse pressure
gradient

= most near-wall k- models are not reliable!
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(Patel et al. 1985)
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Alternative two equation models for wall-bounded flow

Wilcox' 1993 k-w model (cf. lecture 9)

= (<I/—|—VT) kJ) + P — Cukw
o J

= (<1/-|-1/T>w7j> +Pctw—cw2w2

Ow J

29 9L

with: v7 = k/w, and model parameters: o, C,,, Cy,
» no wall-damping necessary
~> but: high sensitivity to freestream boundary conditions

~> use of the original model problematic in general flows!
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Menter's 1994 SST model

1. Blending the w and ¢ equations

> w equation derived from &: cross-diffusion term S, = kjw j/w
» SST model: use S, (1 — F;) instead (0< FA(y)<1)

= k-w model near wall (F; — 1), k-¢ in outer region (F; — 0)

2. Limiting the value of turbulent viscosity in BL

» k-w overpredicts shear stress in adverse pressure gradient

» limiter in SST model: VT = min (57 ﬁﬂ%)
= assures that [(u'v')|/k smaller than /C, = 0.3
» f> — 0 outside BL (2 is mean rate-of-rotation)
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mean velocity

1.0
. . —— ST (c=0.0011)
» adverse pressure gradient: I J— W (oo 4
s d A SA) (ef=00011) 500
_6.dp o= 0 - (k- cf=0,0016 2
,8 = ﬁaﬁ - 87 06 © Exp:riment((cho,uoﬂ)) ¢ ,“’ b
. . )}i;/
» SST model yields improved Y osf ' ]
I ) [P
predictions ozl o ]
» works also reasonably well 00 X
. =20 0
in separated flows (uy* — ut,

(from Menter 1996)
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The modified k-w model of Wilcox (2006)

New k-w model

» contains a limiter function in v

— avoids overpredicting shear stress in APG
» uses a localized cross-diffusion term

— reduces free-stream sensitivity of the original model
= formulation is similar to SST model

~ no direct comparison of k-w versus SST models available in
literature
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The wall function approach

Two-fold problem of computations in near-wall region

» modeling complexities

» high computational effort due to steep gradients

Possible trick

» if flow is approximately parallel to surface:
— skip near-wall region
— compute only from log-region outwards

= apply boundary conditions in log-region
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Deriving wall-functions for the k- model

Conditions for equilibrium boundary layer

> suppose y =y, located in the log-region

» log-law for mean streamwise velocity:
(u) = ur (3 log(*2") + B)
» approximate Iog—layer relations:
P=£ —(V)=u?
S 2

~ u
= L k
= &= =

Note for Reynolds stress models

» the stresses are approximately constant:
Oy (ujui) =0

solution domain

y
yp
L)

log-region
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Wall functions — practical implementation (example)

Given current values: (u), = (u)(yp), ko = k(¥p)

S

> @8

e

compute friction velocity: u} = C,i/4k1/2

compute nominal velocity: (u)* = u? (1 |og(ypu )+ B)
*2 {U)p
T (w)*

apply shear stress as boundary flux on streamwise momentum

compute shear stress: —(u'v/)* = u

— this provides robust condition

apply zero-gradient condition on k
*3

s -~ I
Impose: € =
P RYp
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momentum thickness
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» wall-function computations yield predictions in agreement
with measurements (here: exp. of Klebanoff 1954)
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Extending the wall function approach

Various additional effects can be incorporated:

» roughness: variation of intercept constant B in log-law

» if boundary point is located below the logarithmic layer:

— approximate expression for viscous sublayer (Durbin 2001)
» incorporating effect of pressure gradients (Shih et al. 1999)
» surface heat transfer effects (Nichols & Nelson 2004)

> ...
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» separated flows
» impinging jets
» transitional boundary layers

~~ wall-functions physically unrealistic!
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» high Reynolds number and
far from solid boundaries:

— approximate isotropy
ay BF
» near the wall:

— significant anisotropy

yid
(DNS Spalart 1988, Reg = 1410)
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Anisotropy of dissipation
Near-wall pressure correlations

Models for near-wall anisotropy of dissipation

» asymptotically for y — 0: 3307
eife = (Wulk i#2j#2 3¢
enfe = 2uju)/k i#2 0r
em/e = Aujul)/k
» Rotta (1951) model: i
gj/e = (uiu)) [k
» Lai & So (1990) model: T
blending with isotropic 107
expression for outer flow o DNS data Spalart (1988)
Eij = 62@ +(1- f;)%&js —— Rotta’s model
~> blending too rapid —=== Lai & So model

= more elaborate models exist 21 /%
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Anisotropy of dissipation
Near-wall pressure correlations

Wall-effects on the pressure field

Poisson equation for fluctuating pressure
V2p' =S, with: Sp = —2p(u;) jui; —p (u = (u; uJ>)
7./
» decomposition: p’ = p(" + p(P)
» homogeneous pressure p(h: v2pth) =
» particular pressure p(P): Vv2p(P) = Sp

» p(") =0 in unbounded flow

Effects in wall-bounded flow:
1. p(h £0
2. pP) modified due to wall reflection
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» boundary condition at a wall: d,p'/p = vd,, v’
» DNS shows: small effect, negligible for y™ > 15

= pM contribution to pressure-strain correlation neglected in
RANS models
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Anisotropy of dissipation
Near-wall pressure correlations

Wall-effects on the pressure field (3)

Modification of particular pressure p(P)

» appropriate boundary condition at wall: ayp(p) =0
o o o
= px) = — / / / Sp(X) e
— 0o — o0 —0o0
where source is mirrored at wall: Sp(—y) = Sp(y)

» the solution can be rewritten as:

plP)(x) = —417r/ / Sp(x) (er i) O

—00 0 —
X
» “wall-echo” effect y X
= pressure-strain has additional contribution ' wall
o
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Anisotropy of dissipation
Near-wall pressure correlations

Wall-echo pressure-strain modeling

Consequences for RSM modeling

» the additional wall-echo term decays as y,,*

» some pressure-strain models incorporate explicit terms for
wall-echo effects, e.g. Gibson & Launder (1978):

RI(.J.S’W) = 0.2%7& ((ulum>n,nm5,-j — %(u,-u,)njn/ = %(uju,)n,n;)
~» problem: wall-echo models lack universality

e.g. deteriorated performance in impinging flows
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Anisotropy of dissipation
Near-wall pressure correlations

Elliptic relaxation models

» Durbin (1993): problem is /ocal expression for pressure-strain

» proposes elliptic partial differential equation:

fj — LpV2 1y = Ryj/k, Ri) = fi k

ij
with: Rj; usual redistribution model; Lp a length scale
» homogeneous flow: sz,-j =0 - RE-J-e) =Rj

» otherwise: operator (I — L2 V?) mimics non-localness of
pressure-Poisson equation

= takes into account boundary conditions on f;;

§

note: 6 additional PDEs added to the system
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redistribution terms:

2~
I'I,-J- —E,’j+ 55(5,’]

o DNS Mansour et al. (1988)
———— SSG model
——  SSG/elliptic relaxation

(from Durbin & Petterson Reif, 2001)

» elliptic relaxation models with RSM can significantly improve
predictions of redistribution terms
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Anisotropy of dissipation
Near-wall pressure correlations

Summary

How can RANS models be applied to wall-bounded flows?

1. the wall-function approach
» allows to bridge near wall region with analytic expressions
~- problems in non-parallel flows (separation)
2. modified two-equation models for the wall region
~> most k-e-based models lack generality
» k-w and SST models yield better performance

3. modifications to Reynolds-stress models

~~ distance-function-based approach lacks generalit
(dissipation tensor, pressure wall-echo)

» elliptic relaxation promising for complex wall-bounded flows
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» algebraic stress models

» nonlinear eddy viscosity models
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» S. Pope, Turbulent flows, 2000
— chapter 11

» P.A. Durbin and B.A. Pettersson Reif,

Statistical theory and modeling for turbulent flows, 2003
— chapter 7

» D.C. Wilcox, Turbulence modeling for CFD, 2006
— chapter 4 and 6
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