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Introduction
Constructing Reynolds-stress models
Performance

LECTURE 10

Reynolds-stress transport models
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» why resort to Reynolds-stress models?
> how to derive the (uju}) transport equation?

» how to model the principal unknown terms?
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Introduction
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Performance

Why use Reynolds-stress transport models?

Fundamental deficiency of turbulent viscosity models:

» Reynolds stress is assumed /ocal function of mean strain-rate

— transport/history effects are neglected

(e.g. failure in relaxation from mean strain — cf. lecture 8)

Attractive features of Reynolds-stress transport models:

» avoid any turbulent viscosity hypothesis
» transport & production terms are in closed form
— transport effects “built-in"

— stress production “exact” even in complex straining fields
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Deriving the transport equation for the Reynolds stress

Steps in deriving the exact equation from Navier-Stokes

Ol R CORRI DN

note that O¢(uju}) = (UiOru; + u;Oru})
write transport equation for fluctuating velocity u’
multiply ith-component with u]

multiply jth-component with v/

i

add results from 2. and 3.

take average of result from 4.
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The exact transport equation for the Reynolds stress

I5<u’/ujl> o7 1 /! 1 /s !l
=—— + (“,‘Uj”k>+;<P Uj>5ik+;<P ui)oj — v{uju;) k

Dt

turbulent transport 7;;

1
(o) g = ) () + = (') + 4Pl ) = 2wl )
P —_——

production P;; dissipation tensor ¢

pressure-strain R;;

> pressure—rate-of-strain R; and dissipation ¢;; are unclosed
» first three terms of turbulent transport 7 are unclosed
» half the trace of this equation yields TKE equation

» pressure—rate-of-strain is absent in TKE equation
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» principal production:
Pra ~ —2(u'v/)(u)

» mainly balanced by:
dissipation &
pressure—rate-of-strain

note:
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(DNS Spalart 1988, Rey = 1410)
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no production:

P ~ 0

gain from
pressure—rate-of-strain
approximately balanced
by dissipation
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(DNS Spalart 1988, Rey = 1410)
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Nature of the pressure—rate-of-strain correlations

Observation from flow data:
» pressure terms are of significant magnitude
» pressure—rate-of-strain correlation has redistributive character
» due to incompressibility, term has zero trace:

Rij=; (<p’U},;> + <p’ua,->) — Ri=

= no contribution to turbulent kinetic energy

Pressure—rate-of-strain is main challenge for modelling!
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Dissipation tensor components in boundary layer flow

25
Observations:
e 20f
5 1)
» for high Reynolds number: S €11
15
dissipation tensor is .
. . . [€3 .
approximately isotropic +o
» low Reynolds in DNS: 05}/ &
— some residual isotropy oop f2
but: significant anisotropy near 05 ‘ ‘ ‘ : ‘
0.0 0.2 0.4 0.6 0.8 1.0
wall (cf. lecture 11) yid
(DNS Spalart 1988, Rey = 1410)
L . . 2,
= dissipation tensor often modelled as isotropic: |gj; = §€ djj
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Unclosed terms in the Reynolds-stress transport equation

Reynolds-stress equation, assuming isotropic dissipation:

D<ul{uj{> ’og 1., 1., i 2z
—=— + |[{uiuju) + =(p'uj)oi + =(p'uf) o +v(uiul) k| =Py + Ry — 580
Dt NI p ]
7\ 7o)

Kij P

Models need to be prescribed for the following terms:

» triple correlation Tk(uu) and pressure transport Tk(;)

» the scalar (pseudo) dissipation rate £ —  similar k- model

> the pressure-rate-of-strain correlation R ;
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The Poisson equation for pressure fluctuations

Fluctuating pressure equation (instantan. pressure: lecture 2)

LV = —2u) u — (v — (whu)

» pressure can be decomposed into 3 contributions
p/ = p(h) _|_ p(r) _|_ p(s)

» homogeneous pressure p(M: v2p(h) =0
» rapid pressure p(r): v2p() = = —2p{u;) j U’ Ui ;
» slow pressure p(s): v2pls) = —p (u uh — <u,uj>)

7./

= 3 different contributions to pressure-strain correlation
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Contributions to pressure-strain correlation

Homogeneous pressure — Rf-jh) = (p(h)(u,f’j +ui )/ p

» influenced by boundary conditions only
> R,(-jh) vanishes in homogeneous turbulence

» contribution important near walls (lecture 11)
Rapid pressure

» reacts instantly to mean velocity gradients

» dominant contribution for large strain rate Sk/e
Slow pressure

» determined by self-interaction of turbulent field
» principal mechanism for return to isotropy without strain
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Modelling the slow part of pressure-strain

Homogeneous turbulence without mean velocity gradients:

2

(s)

> no mean velocity gradients — R = RU

» modelling ansatz: Rf-js) = £ Fjj (bjj)

» the most general tensor function is:

3
» (1, G, are scalar functions

1
F = Gby + G <b§- — 2 bl 5:‘1)

» Rotta’s linear model: ‘ G =-2C, G=0

= linear return-to-isotropy: d¢b;j = —(Cr — 1) £ b;;
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evolution of bj; in straight duct section

02 T T T T

015%%%%

.. . 022
» mean strain is imposed in a i e .
distorting duct QS R
-0.15 -
» then: in straight section, " i 2 s s
distance x

turbulence relaxes to isotropy

(x, 0, ® experiment LePenven et al. 1985)

» simple linear model works in
this case

(—— Rotta model, Cg = 1.5)
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Return-to-isotropy: depends on complete state of b

» process can be described by
two invariants of tensor b:
I, = —3bjjbj;

Iy = $bj;bj by

» isotropy: Il =1l =0

case A case B

2nd invariant of b

» experiments: return rate

depends on invariant [/l ! 1y cose B (Ml < 0)

-0.01 T
.

» linear model:
delly, = —2(Cr — 1)%//,,

model should be non-linear
Shih/Lumley 1985: Ci(/1,111) 003}
= Speziale et al 1991: G, #0 distance x

-0.02

H

4
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Modelling the fast part of pressure-strain

Homogeneous turbulence with mean velocity gradients:

2
£jj

Oeufuf) = Py + Ry — 5

» here: P;j A0 and Rjj = R,(-jr) + Rf-js)
> exact expression: jor) = 2(up) k (Mir + Migjr)
where M is an integral of two-point correlations
> in single-point closures: M j modelled as function of (b, k)
» symmetry, tensorial considerations & realizability constraints

— lead to functional form'

— k Zn_ (”)
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R(’)

k Z Fn) 7"

n=3
n 7" £ LRR
(Launder et al.
1975)
35 3
4 Slkbkj + blkskj - -5k/b/k5y %1 & (2 + 30)
5 Q kbk_, kakj ~ (10 7G)
6 .?,kb + b,kS_kJ %Sk,b,zk&,-j 0
7 Quby — b2 Q4 0
8  biSuby — 35ub3 5 0
G =04
satisfies realizability: no
where: 5 = 3 ((ur) j + ()).1), Q= 5 ((wi).j — {u).)

SSG

(Speziale et al.
1991)

¢ 1137,

O O oOwulnna

SL
(Shih & Lumley
1985)

4
5
12G
12-70)

[SIENGIES

_8
5
G =%a
2 = 15(1+

2e(lly; 1ly))
yes
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Results for pressure-strain models in homogeneous shear

Comparison with experimental measurements

> note: this test involves rapid and slow parts R,(-jr) + R,(-js)

» equilibrium results:
experiment

LRR SSG SL Tavoularis & Karnik (1989)
b11 0.155 0.219 0.135 0.18
by -0.122 -0.146 -0.136 -0.11
b33 0.033 0.073 -0.001 0.07
b1» -0.188 -0.164 -0.108 -0.16

» LRR and SSG models provide reasonable values

» Shih/Lumley model yields too weak tangential component b1,
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Reynolds-stress transport in non-homogeneous flow

D<u’/ujl> 1o 1 ’o 1 i i 2~
—— + |{ujujup) + =(p'up)duc + = (P updou +viujul) | =Py + Ry — 5E5;
Dt —_—— P P

7 e

Kij *
Additional modeling for non-homogeneous flows:

> use local pressure—strain model R;; as in homogeneous flow
(except for wall corrections — cf. lecture 11)

» models for triple correlation ’Z;((Uu) and pressure transport ’Z;(lf)

» equation for the dissipation rate, involving transport &
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Modeling combined turbulent transport

Gradient diffusion models '];((Ut) — k(l_J‘_J) + /];((I_J/_J)
k2 a(u'u!
» isotropic eddy diffusivity: Tk(f) = C— 8<8: ;)
y & Xk
——
VT

with constant Cs = 0.09 as in k-¢ model

. .. k O(ulul)
» eddy diffusivity tensor model: Tk(ut) = - ng(uf(uﬁ o

—_———
()

with constant C5 = 0.22

» more general models, symmetric w.r.t. indices i, j, k
(Mellor & Herring, 1973; Hanjalic & Launder, 1972)

» models based on transport equation for (uiuuj)
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Experimental data for triple correlation

Self-similar mixing layer

» triple term dominates

transport ]
i ‘\.'\.\,
> compare ’Tk(uu) with ! ——
isotropic eddy diffusivity ! el
! "
model: y | sy |
) /2 h
(W) = —C; k? (W'v'), R
(u’v’v’)/Ug

= reasonable predictions
B measurement Bell & Mehta (1990)

eddy diffusivity model
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5 - Pe &2
= ((V—(Sm + @) 8,k) l-l- Cng — Caz?

5

U|| (W]l
=

)

» production is exact: P = —(uju;){u;)
» turbulent diffusion term has anisotropic eddy viscosity:
2V Csé(u;(uﬁ with: C./o. = 0.15

» other constants take standard values: C.1 = 1.44, C.o = 1.92
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Predictions for mixing layer flow

Self-similar mixing layer

» spreading rate dé/dx:
exp. LRR SSG k-

0.019 0.019 0.018 0.016 s . —
. L s |
— LRR, SSG yield good v g
predictions 0
Yo s
» turbulence structure similar ° .| ]
to homogeneous shear flow " ‘ ‘
0 0.05 0.2 0.3

= performance as calibrated

(experiment of Bell & Mehta, 1990)
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Constructing Reynolds-stress models

Introduction Free shear flow

Secondary flow in square duct
Performance BL on curved walls

Flow through a straight square duct

secondary flow vectors
20

un,
o o
P ®
ﬂ
2
g

0.0 05 zh 10

(from Durbin and Pettersson Reif, 2001)

(V) By (wx) + (W) Bz {wx) = By ((V/V') — (W'w')) + (8yy — 8z2) (v/W') + v (Byy + 8zz) (wx)

» Reynolds-stress model predicts: secondary shear stress (v/w’)
& normal-stress anisotropy (v/v') — (w'w’)

» here: secondary flow strength underpredicted
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Boundary layer on curved walls

Concave wall Convex wall

Q
R

<
.

e’
c
“eqeet®
ve®

o0 oo

1350

599 N
75 N
50 y
- \\b

_ —(u'v")
o experlments, —— Reynolds-stress model (Durbin 1993)
» increased production » reduced production
— enhanced turbulence — damped turbulence

= captured by Reynolds stress transport model
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Summary
Why resort to Reynolds-stress models?
» convective transport and production mechanisms are exact

(uju;) transport equation derived from Navier-Stokes

Pressure-strain correlation is principal unknown

» splitting in slow and rapid part

» modelling for homogeneous flow (tensor fct., realizability)

Performance of Reynolds-stress models:

» account for complex straining fields, normal stress anisotropy



» the wall-function approach

» specific model modifications for the wall region
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» S. Pope, Turbulent flows, 2000
— chapter 11

» P.A. Durbin and B.A. Pettersson Reif,
Statistical theory and modeling for turbulent flows, 2003
— chapter 7
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