
Introduction
Constructing Reynolds-stress models

Performance

Turbulenzmodelle in der Strömungsmechanik
Turbulent flows and their modelling

Markus Uhlmann

Institut für Hydromechanik

www.ifh.uni-karlsruhe.de/people/uhlmann

WS 2008/2009

1 / 29

http://www.ciemat.es/sweb/comfos/personal/uhlmann/turbmod/report_1.html


Introduction
Constructing Reynolds-stress models

Performance

LECTURE 10

Reynolds-stress transport models

2 / 29



Introduction
Constructing Reynolds-stress models

Performance

Questions to be answered in the present lecture

How can the equations be closed at the second-moment level?

I why resort to Reynolds-stress models?

I how to derive the 〈u′iu′j〉 transport equation?

I how to model the principal unknown terms?

How do Reynolds-stress models perform?
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Why use Reynolds-stress transport models?

Fundamental deficiency of turbulent viscosity models:

I Reynolds stress is assumed local function of mean strain-rate

→ transport/history effects are neglected

(e.g. failure in relaxation from mean strain – cf. lecture 8)

Attractive features of Reynolds-stress transport models:

I avoid any turbulent viscosity hypothesis

I transport & production terms are in closed form

→ transport effects “built-in”

→ stress production “exact” even in complex straining fields
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Deriving the stress transport equation
Modelling the pressure-strain correlation
Inhomogeneous flows

Deriving the transport equation for the Reynolds stress

Steps in deriving the exact equation from Navier-Stokes

note that ∂t〈u′iu′j〉 = 〈u′j∂tu′i + u′i∂tu′j〉
1. write transport equation for fluctuating velocity u′

2. multiply ith-component with u′j

3. multiply jth-component with u′i

4. add results from 2. and 3.

5. take average of result from 4.
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The exact transport equation for the Reynolds stress

D̄〈u′i u
′
j 〉

D̄t
+

2666664〈u′i u′j u′k 〉+
1

ρ
〈p′u′j 〉δik +

1

ρ
〈p′u′i 〉δjk − ν〈u

′
i u
′
j 〉,k| {z }

turbulent transportTkij

3777775
,k

=

−〈ui 〉,k 〈u′ku′j 〉 − 〈uj 〉,k 〈u′ku′i 〉| {z }
productionPij

+
1

ρ

“
〈p′u′j,i 〉+ 〈p′u′i,j 〉

”
| {z }

pressure-strainRij

− 2ν〈u′i,ku′j,k 〉| {z }
dissipation tensor εij

I pressure–rate-of-strain Rij and dissipation εij are unclosed

I first three terms of turbulent transport Tkij are unclosed

I half the trace of this equation yields TKE equation

I pressure–rate-of-strain is absent in TKE equation
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Importance of the terms in a boundary layer flow

0 = −
D̄〈u′

i u
′
j 〉

D̄t
−〈u′i u

′
j u
′
k 〉,k +ν〈u′i u

′
j 〉,kk +Pij +Πij −εij

(1) (2) (3) (4) (5) (6)

Budget of streamwise
normal stress 〈u′u′〉

I principal production:

P11 ≈ −2〈u′v ′〉〈u〉,y
I mainly balanced by:

dissipation &

pressure–rate-of-strain

note: Πij ≡ Rij −
1
ρ

“
〈p′u′j 〉δik + 〈p′u′i 〉δjk

”
,k

(DNS Spalart 1988, Reθ = 1410)
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Modelling the pressure-strain correlation
Inhomogeneous flows

Importance of the terms in a boundary layer flow

0 = −
D̄〈u′

i u
′
j 〉

D̄t
−〈u′i u

′
j u
′
k 〉,k +ν〈u′i u

′
j 〉,kk +Pij +Πij −εij

(1) (2) (3) (4) (5) (6)

Budget of wall-normal
stress 〈v ′v ′〉

I no production:

P22 ≈ 0

I gain from

pressure–rate-of-strain

I approximately balanced

by dissipation

(DNS Spalart 1988, Reθ = 1410)
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Deriving the stress transport equation
Modelling the pressure-strain correlation
Inhomogeneous flows

Nature of the pressure–rate-of-strain correlations

Observation from flow data:

I pressure terms are of significant magnitude

I pressure–rate-of-strain correlation has redistributive character

I due to incompressibility, term has zero trace:

Rij ≡ 1
ρ

(
〈p′u′j ,i 〉+ 〈p′u′i ,j〉

)
→ Rii = 0

⇒ no contribution to turbulent kinetic energy

Pressure–rate-of-strain is main challenge for modelling!
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Deriving the stress transport equation
Modelling the pressure-strain correlation
Inhomogeneous flows

Dissipation tensor components in boundary layer flow

Observations:

I for high Reynolds number:

dissipation tensor is
approximately isotropic

I low Reynolds in DNS:

→ some residual isotropy

but: significant anisotropy near
wall (cf. lecture 11)

CHAPTER 7: WALL FLOWS

Turbulent Flows
Stephen B. Pope

Cambridge University Press, 2000

c©Stephen B. Pope 2000
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Figure 7.39: Normalized dissipation components in a turbulent bound-

ary layer at Reθ = 1, 410: from the DNS data of Spalart (1988)

for which δ = 650δν.

35

(DNS Spalart 1988, Reθ = 1410)

⇒ dissipation tensor often modelled as isotropic: εij =
2

3
ε̃ δij
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Deriving the stress transport equation
Modelling the pressure-strain correlation
Inhomogeneous flows

Unclosed terms in the Reynolds-stress transport equation

Reynolds-stress equation, assuming isotropic dissipation:

D̄〈u′i u
′
j 〉

D̄t
+

266666664
〈u′i u

′
j u
′
k 〉| {z }

T (u)
kij

+
1

ρ
〈p′u′j 〉δik +

1

ρ
〈p′u′i 〉δjk| {z }

T (p)
kij

+ν〈u′i u
′
j 〉,k

377777775
,k

= Pij +Rij − 2
3
ε̃δij

Models need to be prescribed for the following terms:

I triple correlation T (u)
kij and pressure transport T (p)

kij

I the scalar (pseudo) dissipation rate ε̃ → similar k-ε model

I the pressure–rate-of-strain correlation Rij
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Modelling the pressure-strain correlation
Inhomogeneous flows

The Poisson equation for pressure fluctuations

Fluctuating pressure equation (instantan. pressure: lecture 2)

1

ρ
∇2p′ = −2〈ui 〉,j u′j ,i −

(
u′iu
′
j − 〈u′iu′j〉

)
,ij

I pressure can be decomposed into 3 contributions
p′ = p(h) + p(r) + p(s)

I homogeneous pressure p(h): ∇2p(h) = 0

I rapid pressure p(r): ∇2p(r) = −2ρ〈ui 〉,j u′j ,i

I slow pressure p(s): ∇2p(s) = −ρ
(

u′iu
′
j − 〈u′iu′j〉

)
,ij

⇒ 3 different contributions to pressure-strain correlation
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Deriving the stress transport equation
Modelling the pressure-strain correlation
Inhomogeneous flows

Contributions to pressure-strain correlation

Homogeneous pressure → R(h)
ij ≡ 〈p(h)(u′i ,j + u′j ,i)〉/ρ

I influenced by boundary conditions only
I R(h)

ij vanishes in homogeneous turbulence
I contribution important near walls (lecture 11)

Rapid pressure

I reacts instantly to mean velocity gradients
I dominant contribution for large strain rate Sk/ε

Slow pressure

I determined by self-interaction of turbulent field
I principal mechanism for return to isotropy without strain
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Deriving the stress transport equation
Modelling the pressure-strain correlation
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Modelling the slow part of pressure-strain

Homogeneous turbulence without mean velocity gradients:

∂t〈u′iu′j〉 = Rij − 2

3
ε̃δij

I no mean velocity gradients → Rij = R(s)
ij

I modelling ansatz: R(s)
ij = ε̃Fij (bij)

I the most general tensor function is:

F (s)
ij = C1bij + C2

(
b2
ij −

1

3
b2
kk δij

)
I C1,C2 are scalar functions

I Rotta’s linear model: C1 = −2CR , C2 = 0

⇒ linear return-to-isotropy: dtbij = −(CR − 1) ε̃
k bij

14 / 29



Introduction
Constructing Reynolds-stress models

Performance

Deriving the stress transport equation
Modelling the pressure-strain correlation
Inhomogeneous flows

Slow pressure-strain models: comparison with experiment

Return-to-isotropy after distorting duct

HOM07: Return to Isotropy of Strained Grid Turbulence

Le Penven, Gence & Comte-Bellot

1. Description of the flow

Grid turbulence was first subjected to three-dimensional strain and then letto relax towards isotropy.

2. Geometry

Nearly isotropic turbulence was produced by a biplane grid with a square mesh sizeM = 50:8mm and a solidity
0.33, followed by a 1.27:1 contraction. This flow entered one of two interchangeable distorting ducts, each with
a length of1:5m and a rectangular-shaped cross- section but both height and width changing continuously, so that
a three-dimensional strain was imposed on the turbulence. Finally, the strained turbulence was let to relax back
towards isotropy in a5:13m long section with a uniform rectangular cross-section.

3. Original sketches

4. Flow characteristics

The objective of the experiment was to determine the rate of return towards isotropy of anisotropic turbulence,
and particularly its dependence on the initial partition of the turbulence kinetic energy into its three components.
The second and third invariants of the Reynolds stress anisotropy tensor,bij = uiuj=ukuk � 1=3�ij , are defined,
respectively, asII = bijbij andIII = bikbkjbji. The two distorting ducts were designed to give approximately
equal values ofII but opposite values ofIII at their exits. Because of the streamwise acceleration, both cases
exhibited a streamwise Reynolds stress that was smaller than the two transverse ones. WhenIII > 0, one of the
transverse stresses was substantially larger than the other one, while, whenIII < 0, the two transverse stresses had
comparable magnitudes. The rate of return of the turbulence structure towards isotropy was found to be larger whenIII < 0 than in the other case.

5. Flow parameters

The mean velocity at the entrance to the distorting duct wasUo = 6:06ms�1 for III > 0 and7:2ms�1 forIII < 0. In both ducts the mean flow accelerated downstream.

74

I mean strain is imposed in a
distorting duct

I then: in straight section,
turbulence relaxes to isotropy

I simple linear model works in
this case

evolution of bij in straight duct section

b33

b22

b11

distance x

(×, ◦, • experiment LePenven et al. 1985)

(—— Rotta model, CR = 1.5)

15 / 29



Introduction
Constructing Reynolds-stress models

Performance
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Modelling the pressure-strain correlation
Inhomogeneous flows

Return-to-isotropy: depends on complete state of b

I process can be described by
two invariants of tensor b:
IIb = −1

2 bijbji

IIIb = 1
3 bijbjkbki

I isotropy: IIb = IIIb = 0

I experiments: return rate
depends on invariant IIIb !

I linear model:
dt IIb = −2(CR − 1) ε̃k IIb

 model should be non-linear

⇒ Shih/Lumley 1985: C1(II , III )

⇒ Speziale et al 1991: C2 6= 0

IIb

case A

HOM07: Return to Isotropy of Strained Grid Turbulence

Le Penven, Gence & Comte-Bellot

1. Description of the flow

Grid turbulence was first subjected to three-dimensional strain and then letto relax towards isotropy.

2. Geometry

Nearly isotropic turbulence was produced by a biplane grid with a square mesh sizeM = 50:8mm and a solidity
0.33, followed by a 1.27:1 contraction. This flow entered one of two interchangeable distorting ducts, each with
a length of1:5m and a rectangular-shaped cross- section but both height and width changing continuously, so that
a three-dimensional strain was imposed on the turbulence. Finally, the strained turbulence was let to relax back
towards isotropy in a5:13m long section with a uniform rectangular cross-section.

3. Original sketches

4. Flow characteristics

The objective of the experiment was to determine the rate of return towards isotropy of anisotropic turbulence,
and particularly its dependence on the initial partition of the turbulence kinetic energy into its three components.
The second and third invariants of the Reynolds stress anisotropy tensor,bij = uiuj=ukuk � 1=3�ij , are defined,
respectively, asII = bijbij andIII = bikbkjbji. The two distorting ducts were designed to give approximately
equal values ofII but opposite values ofIII at their exits. Because of the streamwise acceleration, both cases
exhibited a streamwise Reynolds stress that was smaller than the two transverse ones. WhenIII > 0, one of the
transverse stresses was substantially larger than the other one, while, whenIII < 0, the two transverse stresses had
comparable magnitudes. The rate of return of the turbulence structure towards isotropy was found to be larger whenIII < 0 than in the other case.

5. Flow parameters

The mean velocity at the entrance to the distorting duct wasUo = 6:06ms�1 for III > 0 and7:2ms�1 forIII < 0. In both ducts the mean flow accelerated downstream.

74

case B

HOM07: Return to Isotropy of Strained Grid Turbulence

Le Penven, Gence & Comte-Bellot

1. Description of the flow

Grid turbulence was first subjected to three-dimensional strain and then letto relax towards isotropy.

2. Geometry

Nearly isotropic turbulence was produced by a biplane grid with a square mesh sizeM = 50:8mm and a solidity
0.33, followed by a 1.27:1 contraction. This flow entered one of two interchangeable distorting ducts, each with
a length of1:5m and a rectangular-shaped cross- section but both height and width changing continuously, so that
a three-dimensional strain was imposed on the turbulence. Finally, the strained turbulence was let to relax back
towards isotropy in a5:13m long section with a uniform rectangular cross-section.

3. Original sketches

4. Flow characteristics

The objective of the experiment was to determine the rate of return towards isotropy of anisotropic turbulence,
and particularly its dependence on the initial partition of the turbulence kinetic energy into its three components.
The second and third invariants of the Reynolds stress anisotropy tensor,bij = uiuj=ukuk � 1=3�ij , are defined,
respectively, asII = bijbij andIII = bikbkjbji. The two distorting ducts were designed to give approximately
equal values ofII but opposite values ofIII at their exits. Because of the streamwise acceleration, both cases
exhibited a streamwise Reynolds stress that was smaller than the two transverse ones. WhenIII > 0, one of the
transverse stresses was substantially larger than the other one, while, whenIII < 0, the two transverse stresses had
comparable magnitudes. The rate of return of the turbulence structure towards isotropy was found to be larger whenIII < 0 than in the other case.

5. Flow parameters

The mean velocity at the entrance to the distorting duct wasUo = 6:06ms�1 for III > 0 and7:2ms�1 forIII < 0. In both ducts the mean flow accelerated downstream.

74

2nd invariant of b

0 1 2 3 4 5
−0.03

−0.02

−0.01

0

case A (IIIb > 0)

case B (IIIb < 0)

distance x
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Modelling the pressure-strain correlation
Inhomogeneous flows

Modelling the fast part of pressure-strain

Homogeneous turbulence with mean velocity gradients:

∂t〈u′iu′j〉 = Pij +Rij − 2

3
ε̃δij

I here: Pij 6= 0 and Rij = R(r)
ij +R(s)

ij

I exact expression: R(r)
ij = 2〈ul〉,k (Mkjil +Mikjl)

where Mijkl is an integral of two-point correlations

I in single-point closures: Miljk modelled as function of (b, k)

I symmetry, tensorial considerations & realizability constraints

→ lead to functional form:

R(r)
ij = k

∑8
n=3 f (n) T (n)

ij
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Deriving the stress transport equation
Modelling the pressure-strain correlation
Inhomogeneous flows

Some common rapid pressure-strain models:

R(r)
ij = k

8X
n=3

f (n) T (n)
ij

n T (n)
ij f (n) : LRR SSG SL

(Launder et al. (Speziale et al. (Shih & Lumley

1975) 1991) 1985)

3 S̄ij
4
5

4
5

+ 1.3
√

IIb
4
5

4 S̄ikbkj + bik S̄kj − 2
3
S̄klblkδij

6
11

(2 + 3C2) 5
4

12C2

5 Ω̄ikbkj − bik Ω̄kj
2

11
(10− 7C2) 2

5
4
3

(2− 7C2)

6 S̄ikb2
kj + b2

ik S̄kj − 2
3
S̄klb

2
lkδij 0 0 4

5

7 Ω̄ikb2
kj − b2

ik Ω̄kj 0 0 4
5

8 bik S̄klblj − 1
3
S̄klb

2
lkδij 0 0 − 8

5

C2 = 0.4 C2 = 1
10

(1+
4
5
g(IIb, IIIb))

satisfies realizability: no yes yes

where: S̄ij ≡ 1
2

`
〈ui 〉,j + 〈uj 〉,i

´
, Ω̄ij ≡ 1

2

`
〈ui 〉,j − 〈uj 〉,i

´
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Inhomogeneous flows

Results for pressure-strain models in homogeneous shear

Comparison with experimental measurements

I note: this test involves rapid and slow parts R(r)
ij +R(s)

ij

I equilibrium results:
experiment

LRR SSG SL Tavoularis & Karnik (1989)

b11 0.155 0.219 0.135 0.18
b22 -0.122 -0.146 -0.136 -0.11
b33 0.033 0.073 -0.001 0.07
b12 -0.188 -0.164 -0.108 -0.16

I LRR and SSG models provide reasonable values

I Shih/Lumley model yields too weak tangential component b12
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Deriving the stress transport equation
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Reynolds-stress transport in non-homogeneous flow

D̄〈u′i u
′
j 〉

D̄t
+

266666664
〈u′i u

′
j u
′
k 〉| {z }

T (u)
kij

+
1

ρ
〈p′u′j 〉δik +

1

ρ
〈p′u′i 〉δjk| {z }

T (p)
kij

+ν〈u′i u
′
j 〉,k

377777775
,k

= Pij +Rij − 2
3
ε̃δij

Additional modeling for non-homogeneous flows:

I use local pressure–strain model Rij as in homogeneous flow

(except for wall corrections – cf. lecture 11)

I models for triple correlation T (u)
kij and pressure transport T (p)

kij

I equation for the dissipation rate, involving transport ε̃
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Modeling combined turbulent transport

Gradient diffusion models T (t)
kij = T (u)

kij + T (p)
kij

I isotropic eddy diffusivity: T (t)
kij = −Cs

k2

ε̃︸ ︷︷ ︸
νT

∂〈u′i u
′
j 〉

∂xk

with constant Cs = 0.09 as in k-ε model

I eddy diffusivity tensor model: T (t)
kij = −Cs

k

ε̃
〈u′ku′l〉︸ ︷︷ ︸

(νT )kl

∂〈u′i u
′
j 〉

∂xl

with constant Cs = 0.22

I more general models, symmetric w.r.t. indices i , j , k
(Mellor & Herring, 1973; Hanjalic & Launder, 1972)

I models based on transport equation for 〈u′iu′ju′k〉
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Deriving the stress transport equation
Modelling the pressure-strain correlation
Inhomogeneous flows

Experimental data for triple correlation

Self-similar mixing layer

I triple term dominates
transport

I compare T (u)
kij with

isotropic eddy diffusivity
model:

〈u′v ′v ′〉 = −Cs
k2

ε̃ 〈u′v ′〉,y
⇒ reasonable predictions

y
r1/2

〈u′v ′v ′〉/U3
0

� measurement Bell & Mehta (1990)

—— eddy diffusivity model
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Deriving the stress transport equation
Modelling the pressure-strain correlation
Inhomogeneous flows

Dissipation rate equation

Similar model equation as in k-ε model:

D̄ε̃

D̄t
=

((
ν · δlk +

(νT )kl

σε

)
ε̃,k

)
,l

+ Cε1

P ε̃
k
− Cε2

ε̃2

k

Here: minor differences w.r.t. k-ε model:

I production is exact: P = −〈u′iu′j〉〈ui 〉,j
I turbulent diffusion term has anisotropic eddy viscosity:

(νT )kl = Cε
k
ε 〈u′ku′l〉 with: Cε/σε = 0.15

I other constants take standard values: Cε1 = 1.44, Cε2 = 1.92
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Free shear flow
Secondary flow in square duct
BL on curved walls

Predictions for mixing layer flow

Self-similar mixing layer

I spreading rate dδ/dx :
exp. LRR SSG k-ε

0.019 0.019 0.018 0.016

→ LRR, SSG yield good
predictions

I turbulence structure similar
to homogeneous shear flow

⇒ performance as calibrated

y
δ
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Free shear flow
Secondary flow in square duct
BL on curved walls

Flow through a straight square duct

secondary flow vectors

(from Durbin and Pettersson Reif, 2001)

〈v〉∂y 〈ωx 〉 + 〈w〉∂z 〈ωx 〉 = ∂yz
`
〈v′v′〉 − 〈w′w′〉

´
+

`
∂yy − ∂zz

´
〈v′w′〉 + ν

`
∂yy + ∂zz

´
〈ωx 〉

I Reynolds-stress model predicts: secondary shear stress 〈v ′w ′〉
& normal-stress anisotropy 〈v ′v ′〉 − 〈w ′w ′〉

I here: secondary flow strength underpredicted
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Free shear flow
Secondary flow in square duct
BL on curved walls

Boundary layer on curved walls

Concave wall Convex wall

y
δ99

−〈u′v ′〉

y
δ99

−〈u′v ′〉
• experiments, —— Reynolds-stress model (Durbin 1993)

I increased production
→ enhanced turbulence

I reduced production
→ damped turbulence

⇒ captured by Reynolds stress transport model
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Free shear flow
Secondary flow in square duct
BL on curved walls

Summary

Why resort to Reynolds-stress models?

I convective transport and production mechanisms are exact

〈u′iu′j〉 transport equation derived from Navier-Stokes

Pressure-strain correlation is principal unknown

I splitting in slow and rapid part

I modelling for homogeneous flow (tensor fct., realizability)

Performance of Reynolds-stress models:

I account for complex straining fields, normal stress anisotropy
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BL on curved walls

Outlook: Boundary conditions and wall treatment

How can RANS models be applied in wall-bounded flows?

I the wall-function approach

I specific model modifications for the wall region

28 / 29



Introduction
Constructing Reynolds-stress models

Performance
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BL on curved walls

Further reading

I S. Pope, Turbulent flows, 2000
→ chapter 11

I P.A. Durbin and B.A. Pettersson Reif,
Statistical theory and modeling for turbulent flows, 2003
→ chapter 7

29 / 29


	Introduction
	Constructing Reynolds-stress models
	Deriving the stress transport equation
	Modelling the pressure-strain correlation
	Inhomogeneous flows

	Performance
	Free shear flow
	Secondary flow in square duct
	BL on curved walls


